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ABSTRACT

Considering groups of parameters, rather than parameters individually, can be beneficial for
estimation accuracy if structural relationships between parameters exist (e.g., spatial, hierar-
chical or related to the physics of the problem). Group-sparsity inducing estimators are typical
examples that benefit from such prior information. Building on this principle, we show that the
diffusion LMS algorithm used for distributed inference over adaptive networks can be extended
to deal with structured criteria built upon groups of variables, leading to a flexible framework
that can encode various relationships in the parameters to estimate. We also introduce online
strategies to group the parameters to estimate in an unsupervised manner, and to promote or
inhibit collaborations between nodes depending if these groups are locally or globally appli-
cable. Simulations illustrate the theoretical findings and the estimation strategies.
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INTRODUCTION

A large variety of applications are network-structured and require adaptation to time-
varying dynamics. Sensor networks, vehicular networks, communication networks,
and power grids are some typical examples.

While centralized strategies can extract information from aggregated data more
accurately, they nevertheless become prohibitive in large data scenarios and rely on
a risky fusion-based architecture where failure of the single central processor can
turn this solution unreliable. Distributed strategies are more robust and can be de-
signed to process data in an online streaming fashion, thus avoiding the need to
steer large amounts of raw information. Signal processing over networks has pro-
vided a powerful and convenient set of tools for such scenarios, allowing for effi-
cient in-network learning and adaptation. Several strategies have been proposed in
the literature, including incremental [1, 2, 3, 4], consensus [5, 6, 7], and diffusion
strategies [8, 9, 10, 11, 12, 13, 14, 15]. Diffusion strategies are particularly attrac-
tive since they are scalable, robust, and enable continuous learning and adaptation in
response to data drifts [16, 17, 18].

The working hypothesis for these earlier studies is that the nodes cooperate with
each other to monitor a single process or to estimate a common parameter vector.
We shall refer to problems of this type as single-task problems. Reaching consen-
sus among the agents is critical for successful inference in these problems. Due to
the increased heterogeneity in models and data types, there has been been growing
interest in multi-task problems. Over multi-task networks, rather than promote con-
sensus among all agents, the agents are allowed to track node-specific interests that
happen to share some dependency relation with the interest of other agents. In this
way, even though the objectives may be different, the agents can still benefit from
cooperation. In [19, 20], the authors describe distributed node-specific estimation
algorithms over fully connected networks or tree networks. In [21], the authors for-
malize the problem of adaptation and learning over multi-task networks. They devise
a set of distributed online algorithms based on diffusion adaptation strategy. Exten-
sions to asynchronous networks are considered in [22]. In [23], the performance of
a single-task diffusion implementation is analyzed when it operates in a multi-task
environment. An unsupervised clustering strategy that allows each agent to automat-
ically select the neighboring agents with which it can collaborate is also introduced.
In this scenario, the only available information is that clusters of nodes with com-
mon interests may exist in the network but nodes do not know which other nodes
share the same interest. Other useful works have also addressed variations of this
scenario in [24, 25, 26, 27]. In [28], the authors use multi-task diffusion adaptation
as described in [21] with a node clustering strategy for studying the relation between
the tremor intensity and the brain connectivity of Parkinson’s patients. In [29], the
authors derive a distributed strategy that allows each node in the network to locally
adapt the intensity of cooperation with other nodes. The authors in [30] promote
cooperation between clusters with ¢;-norm co-regularizers. The authors in [31, 32]
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examine an alternative way to model relations between tasks by assuming that they
all share a common latent feature representation. Variations of this scenario are
addressed in [33]. In another scenario, it is assumed that there are parameters of
global interest to all nodes in the network, a collection of parameters of common
interest within sub-groups of nodes, and a set of parameters of local interest at each
node [34, 35, 36]. In [37, 38], the optimum parameter vectors to be estimated by
agents are related according to a set of constraints.

An inspection of the literature on diffusion adaptation over networks shows that,
in most existing works, single-task and multi-task oriented algorithms fuse infor-
mation from neighboring agents via weighted combinations of estimated parameter
vectors. These combinations assign the same scaling weight to all entries in the com-
bined iterates.There are situations, however, where some groups of entries within the
iterate vectors should be weighted differently than other groups of entries within the
same iterates. Consider an example where the top half of the entries of the parameter
vectors to estimate are common across all agents, while the bottom half entries are
randomly distributed without obvious relationship. Uniformly combining estimates
may cause large estimation error due to the presence of significantly different entries.

Considering groups of variables, rather than variables individually, can be bene-
ficial for estimation accuracy if structural relationships between variables exist (e.g.,
spatial, hierarchical or related to the physics of the problem). Group-sparsity induc-
ing estimators are typical examples that benefit from such prior information. In this
chapter, we build on this principle to show how diffusion LMS can be extended to
deal with structured criteria involving groups of variables.

This chapter is organized as follows. Section 1.2 presents the network model
and provides a brief review of diffusion LMS. The group diffusion LMS algorithm
is devised in Section 1.3. Its stochastic behavior is analyzed for known groups of
variables and fixed combination coefficients. Section 1.4 introduces unsupervised
strategies for grouping the variables and setting the combination coefficients of the
group diffusion LMS. In Section 1.5, experiments are conducted to validate the al-
gorithms and theoretical findings. Section 1.6 concludes this chapter.

Notation. Normal font x denotes scalars. Boldface small letters x denote vectors.
All vectors are column vectors. Boldface capital letters X denote matrices. The
(k, ©)-th entry of a matrix is denoted by ()¢, and the (k, £)-th block of a block matrix
is denoted by [ - Jx¢. The superscript (-)" represents transpose of a matrix or a vector.
The notation ||-|| denotes the {,-norm of its matrix or vector argument, while || - [|p.c
denotes the block maximum norm of its block vector or matrix argument. Spectral
radius of a square matrix is denoted by p(-). Matrix trace is denoted by trace(:).
The operator col{-} stacks its vector arguments on the top of each other to generate
a connected vector. The operator diag{-} formulates a (block) diagonal matrix with
its arguments. Identity matrix of size N X N is denoted by I. Kronecker product is
denoted by ®, and expectation is denoted by E{-}. We denote by N, the set of node
indices in the neighborhood of node k, including k itself, and |Ny| its set cardinality.
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NETWORK MODEL AND DIFFUSION LMS
NETWORK MODEL

Let us consider a connected network G = (V, &) defined by a set V = {1,2,...,N}
of N agents, along with a set & of edges that are 2-element subsets of V. We address
the problem of estimating an L X 1 unknown vector at each node k from streaming
data collected over the network. At each time instant n, node k has access to time
sequences {dy(n), Xy}, where di(n) denotes the reference signal, and x; , represents
an L X 1 regression vector with covariance matrix R, ; = E{xk’nxlzn} > 0. We assume
that the data are related via the linear model:

di(n) = Wi X + 2(n) (1.1)

for all k, with w; an unknown parameter vector at node k, and z;(n) a zero-mean i.i.d.
noise of variance o-ik that is independent of every other signal. For determining the
parameter vectors w, we consider the mean-square error criterion at each node k
defined as:

Jewy) = E{ldu(n) — x,wil*} (1.2)

We shall refer to scenarios where all nodes estimate the same parameter vector, that
is, wi' = --- = w} , as single-task problems. Collaboration among nodes with stan-
dard distributed strategies can enhance the estimation performance over the network.
On the contrary, we shall refer to cases where nodes may estimate distinct parameter
vectors, namely, cases where the {w,’:}kN: | are not necessarily the same, as multi-task
problems. Still, we assume that similarities exist in some sense among these pa-
rameter vectors. Otherwise the estimation problem would be node-independent and

would reduce to the non-cooperative setting.

A BRIEF REVIEW OF DIFFUSION LMS

Before introducing the diffusion strategy at the group level, we provide a brief re-
view of standard diffusion LMS derived for single-task scenarios. The goal of this
algorithm is to minimize the following global cost function in a distributed manner
for an enhanced estimation performance over a non-cooperative strategy:

N
N OEDIFACY (1.3)
k=1

We denote the minimizer of (1.3) by w*. Minimizing (1.3) over w with J; defined
by the mean-square error (1.2) is equivalent to minimizing the following alternative
cost [12, 13]:

JE (w) = Jew) + > Iw = wHllg,, (1.4)
(+k
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To bypass the unknown second-order statistics R, ¢, one can rely on the Rayleigh-
Ritz characterization of eigenvalues to approximate the weighted norm in (1.4) by a
scaled unweighted norm [12, 13], say as,

Iw —w*liz., ~ balw —w*I° (1.5)

for some nonnegative coeflicients bg. This leads to the following modified cost
function at node k:

JEV w) = Jew) + ) b Iw = w* (1.6)
t#k

Calculating the gradient vector of (1.6), restricting communication to immediate
neighbors, and using approximation (1.5) along with the arguments from [13], we
arrive at the adapt-then-combine (ATC) strategy without raw data exchange [9]:

lpk,n = Win-1 + U Xip [di(n) - wl-cr,n—lxk,n] (1.7a)
Wen = > anty, (1.7b)
fENk

where p is a small positive step-size. The combine-then-adapt (CTA) form can be
derived in a similar way; it is sufficient for our purposes to continue with the ATC
form (1.7). The coefficients {a} in the above algorithm are given by:

ag=1-p > by (1.8)
LeNi\{k}

ag. = ube, t € Ni\{k} (1.9)

Aek =O, f%Nk (110)

In practice, the coefficients {as} are usually treated as free weighting parameters to
be chosen by the designer. That is, it is not necessary to worry about selecting the
coeflicients {bs}. It is sufficient to select the {az} as nonnegative convex combination
coefficients satisfying:

ag >0, Zagkz 1, ap=0ift ¢ N, (1.11)
fGNk

The selection of the {a} has a significant impact on the performance of the algorithm
for both single and multi-task scenarios [13, 14, 15, 23, 25].

GROUP DIFFUSION LMS
MOTIVATION

It is explained in [13] how (1.5) leads to the fusion (1.7b) of local estimates in the
neighborhood of each node. Note now that all the entries of the intermediate estimate
¥, are scaled by the same weight ag. Figure 1.1 illustrates one possible limitation
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of uniform scaling of the entries and why grouping can be useful in some important
situations. For example, in the figure, adjacent nodes k and ¢ are estimating param-
eter vectors w; and w; whose entries are grouped into three separate sets: both
vectors have the same entries in the first group, they significantly differ in the second
group due to sensor failure for instance, and only differ slightly in the third group
due to sensor drift. It is not suitable to view this scenario neither as a single-task
problem, nor as a multi-task problem, with a single set of combination weights ag.
A small combination weight may not be sufficient to promote the closeness of entries
in the first and third groups, whereas a large combination weight may lead to a large
estimation bias caused by the second group.

This example motivates us to introduce a grouping strategy. More generally, let
M be a positive integer less than or equal to L, and let {gm}j‘,{:l be a partition of the
set of indexes G = {1,..., L}, namely,

M
JGn=6. GunGw=0if mzm (1.12)
m=1

We also let wg, or [wlg, denote a sub-vector of w indexed by G,,. In the case of

Fig. 1.1(b), these are the sub-vectors that correspond to the groups G|, G» and Gs.

We can then assign larger combination weights to the first group, smaller or even

null-valued weights to the second group, and medium-value weights to the third

group. Such grouping strategy ends up exploiting the structure of the parameter vec-
tors more fully. However, since information on the internal group structures may
not be available beforehand, one possible strategy is to split parameter vectors into

a number of groups of preset lengths and assign a combination coefficient to each

group, as illustrated in Fig. 1.1(c). In the sequel, we shall describe an unsupervised

adaptive strategy to estimate the parameter vectors in these scenarios in an online
manner. Note that the parameter vector entries within each group need not be neces-
sarily contiguous. In the scope of this chapter, we shall only focus on homogeneous
groups of entries across the network, namely, we shall assume that the parameter
vectors at all nodes possess the same grouping structure across the network. While
heterogeneous group models are able to represent more complex application sce-
narios, it will require further notation and a more complex algorithm development.

GROUP DIFFUSION LMS ALGORITHM

We now motivate the group diffusion LMS from the single-task derivation by approx-
imating the second-order statistics R, ¢ in an alternative manner. Inspecting (1.5), we
now assign a scaling factor to each group of entries instead of using a single factor,
i.e., We now use

M
v = w*lk, = > bunlwg, —wp, I (1.13)

m=1
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FIGURE 1.1

(a) Parameter vector structures for nodes k and ¢: 3 sets of entries have differ-
ent levels of similarity, encoded by colors. (b) A scenario with 3 groups; (c) a
second scenario with 6 groups.

where by, 1s the nonnegative weight for group m. The global cost (1.6) is then
relaxed as follows:

M
JE W) = W)+ D bawlwg, —w, I (1.14)

t#k m=1

Calculating the gradient vector of (1.14), following the same steps as for dif-
fusion LMS, and introducing the following combination weights as, for each

group m:
Qe = 1 — Z bekm (1.15)
LeN\{k}
Acem = 1 bem, t e Ni\{k} (1.16)
agem =0, ¢ N, (1.17)
we arrive at the group diffusion LMS algorithm:
Yin = Wit + 11 Xp 0 (di(n) = X, Wi 1) (1.18a)
Winls, = Y asnl¥yulg,. for m=1,.... M. (1.18b)
LeNy
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Parameters U%zl{agk,m} can be adjusted by the users. Each subset {as,,} now

forms a left-stochastic matrix A,,, i.e.,form=1,..., M
agem 2 0, Z agm =1,  apm =01if € & Ny (1.19)
ZeNk

Appropriate selection of these coefficients can enhance the performance of diffusion

LMS, especially for scenarios with structural relationships within groups. In Sec-
tion 1.4.3, we shall introduce an unsupervised strategy to adjust these weights in an
online manner. One earlier version of the group diffusion strategy (1.18a)—(1.18b)
was introduced in [39] and applied there to the problem A/D converters tuning. In
that application, the combination weights {as ,,} were selected proportionally to the
SNR conditions within relevant frequency bands.

NETWORK BEHAVIOR

We now study the behavior of the group diffusion LMS algorithm (1.18) with con-
stant combination weights a ,, that satisfy conditions (1.19). To proceed, we collect
the information from across the network into block vectors and matrices. In partic-
ular, we denote by w, and w* the stacked weight estimate vector and the stacked
optimum weight vector, respectively:

w, =col{w ..., Wnn} (1.20)
w* =coliw],...,wx} (1.21)

We consider the case where the w} are distinct. The weight error vector wy,, for each
node k at iteration n is defined by:

Wk,n =Win — W,: (1.22)
These error vectors wy, are also stacked on top of each other to get the vector:
Wy = col{Wi ..., W) (1.23)

We assume that the regression vectors xy, arise from a zero-mean random process
that is temporally (over n) stationary, white, and independent over space (over k)
with R, ; = E{x;(n) ka(n)} > (. This independence assumption is widely used in the
analysis of adaptive learning systems [40, App. 24.A], [14, Chs. 10-11].

1.3.3.1 Mean weight behavior analysis

Subtracting optimum vectors w;’ from both sides of the adaptation equation (1.18a),
and using

di(n) = X, Win1 = %) = X, Wiy (1.24)
gives

lﬁk,n - W; = Wk,n—l —HM xk,nx]:nwk,n—l +u xk,nZk(n) (1 25)
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Before establishing the relation between the weight error vectors w,, and w,,_1, it
is convenient to introduce the N X N block matrix

A - A
A= Lo : (1.26)

Anvt - Ann
Each block A is an L X L diagonal matrix whose i-th diagonal entry is ag ,, where
m refers to the subset of indexes G,, to which index i belongs. In the single task
case, expression (1.26) reduces to matrix A = A ® Iy considered in [14, Ch. 8] for

analyzing the convergence behavior of diffusion LMS, with (A)g = ag.
Matrix A can also be expressed as follows:

A=A )+ +(Au®Jn) (1.27)

where J,, is an L X L diagonal matrix with diagonal entries defined as:
Umii=1, ifieGy (1.28)
(Jm)ii =0, otherwise (1.29)

Since the weights ay , satisfy condition (1.19), i.e., each matrix A, is left-stochastic,
matrix A is also left-stochastic.
With the above matrix A, it can be verified that:

Wy =AW, —w)+ A -Dw* (1.30)

where ¢, = col{¥, ,, - , ¥y, }. Using (1.25), we write:
Wy = AT = p R )Wyt + WA Py + (AT = Dw™ (1.31)
with R, ,, = diag{xl,nxin, .. .,xN,nx;yn} and p,, = {x1,21(n), ..., Xy ,2zn(n)}. Taking

the expectation of both sides of (1.31) and using the independence assumption, we
arrive at the mean behavior equation of the group diffusion LMS algorithm:

Ew,} = A" (I - uR)EW,1} + (A" - DHw* (1.32)

with R, = diag{R, ;,..., R, n}. We shall now provide a condition on u to guarantee
the stability of (1.32).

The convergence of (1.32) is determined by the stability of A" (I — uR,). Algo-
rithm parameters should be chosen to satisfy the mean stability condition:

P(ATT - uRy)) < 1. (1.33)

where p(-) denotes spectral radius of its matrix argument. Let us first focus on matrix
A. Let x = col{xy,...,xy} be an arbitrary L X 1 block vector whose individual en-
tries {x;} are vectors of size L x 1 each. Considering (1.27), using that ¥.Y| @ji,n = 1
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with aj;,, > 0, and Jensen’s inequality, we have:

i M M N 2
S azen)d] =SS S

m=1 m=1 j=1

N
Zajlm”mej”

1 j=1

Matrix J,, is actually an orthogonal projection matrix that sets to 0 in (1.34) the
entries of x; that are not indexed by G,,. Since {Qm} _, 18 a partition of the set of
indexes, we have:

IA

™M= EMz

Ms

1 m

Toxi| (1.34)

IR
1=

J

M N ) N 5
D= D el = P (1.35)
. Z

m=1 j=1

We conclude that

2
<1 (1.36)

M
o = | Z:;A,; & J,

We know that the spectral radius of any matrix X satisfies p(X) < || X]|, for any in-
duced norm. Applying this to A" (I — uR,), we have:

P(ATI ~puRY) < [AT[ |1 - xR (1.37)
<|[1-pR| (1.38)
It then follows that the group diffusion LMS asymptotically converges in the mean,
for any initial condition, if the step-size satisfies:
2

Oo<uy< ——mm (1.39)
K maxg /lmax(Rx,k)

Setting n — oo in (1.32) leads to the the asymptotic mean bias expression:

=[I-A"T-uR) (A" - Dw*. (1.40)

1.3.3.2 Mean-square error behavior analysis

We shall now perform a mean-square error analysis of the group diffusion LMS. The
purpose of this analysis is to evaluate how the variance E{|[w,||*} evolves with time.
This analysis is based on the energy conservation framework used in [13, 23, 32],
which starts from the weight-error vector recursion in the compact form:

w,=B,w,.1—g,—r (1.41)
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with the transition matrix:

B,=A"I-uR., (1.42)
the stochastic driving term:
g =HA P, (1.43)
and the constant driving term:
r=A" -Hw* (1.44)
The expected values of the stochastic quantities (1.42)—(1.43) are given by:
B=A"I-uR, (1.45)
g=0y. (1.46)
We define the matrix
K =E{B, ®B,} (1.47)

and approximate itby K ~ BT ® B for sufficiently small step sizes. We also define:
G =E(g,g,} = A" diag{o> | Ry1,...,07, Ry} A (1.48)

We skip the derivations here and refer instead to [24,33]. Following similar argu-
ments, the following statements can be justified.

Theorem 1. (Mean-square stability) Consider the data model (1.1) and assume the
independence assumption holds. The group diffusion strategy (1.18) is mean-square
stable when the matrix K defined by (1.47), or its approximation, is stable. This
condition is satisfied by sufficiently small step-sizes.

O

Theorem 2. (Network learning curve) Consider the same setting of Theorem 1 and
let &, = E{|W,l>/N} denote the average network mean-square deviation (MSD) at
time n. Then, the learning curve of the network corresponds to the evolution of {,
with time and is described by the following recursion over n > 0:

TN\ T 2 = 12
Gunt = &+ |eclGTN K 01 + I, = 10l ke,

(1.49)
~2[y] + (BEW,) @ r o]
Vo1 =K'y, + (K= Iy) (BE(W,} ®r) (1.50)
with oy = vec{#INL}, H = ﬁHWon, Y0 = Ovrypxi-
O

Theorem 3. (Steady-state MSD) Consider the same setting of Theorem 1. The
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steady-state MSD of the group diffusion strategy (1.18) is given by:
lo= (vec{GT)) o + rTE(r — 2BWo)) (1.51)

with We, determined by (1.40), and vec{E} = o = %(I(NL)z — K) Yvec{Iy).

O

Although Theorems 2 and 3 provide closed-form expressions for the network
MSD and steady-state MSD, it may not be practical to evaluate (1.49)—(1.51) due to
the size of the matrices involved, which have dimensions (NL)*> X (NL)?>. In what
follows, we derive equivalent but more compact expressions with matrices of size
NL x NL (see the proof in Appendix 1).

Corollary 1. (Alternative transient MSD expression) Consider the same setting of
Theorem 1. The MSD learning curve of the group diffusion strategy (1.18), provided
by Theorem 2, can be equivalently expressed as follows:

1
i1 =4O+ Ntrace([G + rrT]BnTBn

(1.52)
—Wow, [B""B" - B"'TB"'| - 2T, — 2BE{W,}r" )
.. = BT,B" + Br(B*E{w,})” - r(BE{w,)" (1.53)
with &y = % 1Woll> and Ty = Oyy.
O

Corollary 2. (Alternative steady-state MSD expression) Consider the same setting
of Theorem 1. The steady-state MSD of the group diffusion strategy (1.18), provided
by Theorem 3, can be equivalently expressed as follows:
Lo = Z B (G + (r—2Bw.)r’)(BY)". (1.54)
n=0

Expression (1.54) is obtained by performing a series expansion of (1.51).

GROUPING STRATEGIES

In many practical cases, information about the group structure is not available before-
hand. It is thus necessary to devise grouping strategies to endow agents with ability
to partition the estimated parameter vectors and to associate appropriate combination
weights to each group.
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FIXED GROUPING STRATEGY

A simple strategy is to split parameter vectors into a number of contiguous groups
with preset lengths, possibly equal, and then assign a combination coefficient to each
group, as illustrated in Fig. 1.1(c). Splitting the parameter vector into subvectors
can improve the performance for some applications, especially when there exist cor-
relations among adjacent entries. However, this strategy may fail with particular
configurations. For instance, consider the case where only the odd entries of the pa-
rameter vectors show some correlation. No matter how the group length is set, the
algorithm will not be able to benefit from a uniform grouping strategy except perhaps
if the group size is set to one. This motivates us to derive smart adaptive grouping
strategies.

ADAPTIVE GROUPING STRATEGY

Adaptive grouping can be viewed as a clustering problem where we need to assign a
label to each entry of a parameter vector. Before proceeding with the derivation, it is
important to keep in mind that, since we are considering algorithms with linear com-
plexity (LMS-type algorithms) within the context of online learning and distributed
adaptation, grouping/clustering should neither be performed in a centralized manner
nor significantly increase the computational complexity. In other words, deriving
a grouping strategy with quadratic complexity would not make much sense in this
context. This constraint rules out most clustering algorithms used in machine learn-
ing and data analysis, e.g., hierarchical clustering, k-means or spectral clustering. In
what follows, we introduce a simple but efficient strategy. As this strategy is time
independent, we shall omit the time index in notation for the sake of simplicity.

We start by introducing the following quantity that characterizes the deviation
between the intermediate estimates defined in (1.18a) at nodes k and ¢:

Okei = )i — ()| for €€ M. (1.55)
fori=1,...,L. By averaging pairwise quantities d;,; within the neighborhood, we
then associate with each node k the following L quantities:

1
Ski= = > Okei for i=1,...,L (1.56)
N LeN;

Each d;; shows how the i-th entry of ¥, deviates from those of its neighbors. Entries
with similar d;; can be assigned to the same group since they have a similar average
contrast level with respect to their neighbors. In this way, groups of entries with
small (resp., large) contrast will lead the multi-task diffusion algorithm to adopt a
consensus (resp., non-cooperative) strategy over these entries. Note that each node k
can calculate 0y ; in (1.56) after collecting the estimates from its neighbors, after the
adaptation step (1.18a). We now propose the following steps to generate the groups:

L .
=1’

1. Sort {6/(,,-}1?= , in ascending order to obtain the ordered sequence {(_Sk,,-}
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2. Generate the difference sequence A= (_Sk,ﬂ - Sk,, and determine the K — 1
largest values Ag; to split {6k,} -, into K sections where the largest changes
occur;

3. Form a group with the original entries &;; that are in a same section. Repeat this
operation with the K sections determined in Step 2.

The computational complexity of this procedure is dominated by the sorting opera-
tion in Step 1. A complexity of O(Llog L) can be achieved with an efficient sorting
algorithm. This grouping strategy derives from a vertex clustering algorithm com-
monly used in the literature [41]. Indeed, consider a fully connected graph with L
vertices associated to the L entries of the local estimate y,. The edge between ver-
tices (i.e., entries) 7 and j is assigned a weight equal to [0 ; — 6 ;. The above group-
ing procedure is then equivalent to generating a minimum spanning tree (MST) with
Prim’s algorithm on this graph [42], and then grouping the vertices into K clusters
by cutting the most significant edges.

Before concluding this section, observe that Step 2. does not take relative differ-
ences into consideration for small 6; ;. We suggest to determine the cutting positions
by considering the K — 1 largest values of the normalized sequence & ;, with & ; = 0
if (_Sk,l- <tand &; = ((_Sk,m - Sk,i) /(_Sk,,- if (_Sk,i > 1, where 7 denotes a given threshold.

ADAPTIVE COMBINATION STRATEGY

We now derive an adaptive combination strategy for group diffusion LMS. Moti-
vated by [23, 43], it consists of adjusting the combination weights as ,, in an online
manner via instantaneous MSD minimization. Let us denote by wy, the weight er-
ror vector Wy, — w; after the combination step (1.18b). Considering groups G,,, the
instantaneous MSD at each agent k can be expressed as a function of a ,, as follows:

E{lcal?) ZE (lwils, = > v s, )

CeNy

M
Z Z Z Atkm a/’k’m(‘llé n))g (1.57)

m=1 CeNy peN;

where matrix ‘I’('") is the covariance matrix of the weight error for group m at node k

and time 1nstant n, with (¢, p)-th entry given by:

* _ T * _
(%), = Bl —Yealp Wi byl Lp e Ni (1.58)
M ep 0, otherwise.

To make the problem tractable, we approximate ‘I’;"l? by an instantaneous value and
we drop its off-diagonal entries. In addition, since w;’ is unknown, we approximate
it by W,’: as shown in (1.61). The instantaneous MSD minimization then leads to the
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optimization problem:

N M
. 2 || :
min 33 i |97 = el
! (=1 m=1 (1.59)
subjectto 1y @xm =1, apm =0

Atkm = 0 if £ ¢ Nk

where @, = [@1km, - - - » Anvem] " - The above objective function promotes weak infor-
mation exchange via small ay ,, if the estimate of group G,, at node ¢ is far from its
counterpart at node k. The solution of (1.59) is given by:

I - el
- % _
ZjENk ”[wk - !ﬁj,ll]gm” 2

We now introduce an instantaneous approximation "‘71:,,1 for w; at each node k and
time instant n. In order to reduce the MSD bias that may result from an inappropriate
cooperation between nodes performing distinct estimation tasks, a possible strategy
is to use the local one-step ahead approximation:

Win = Win + Hy Qi (1.61)

where g, = [di(n) — x] ¥, ] Xi, is the instantaneous approximation of the nega-
tive gradient of Ji(w) at ¥, ,. Substituting this expression into (1.60) leads to the
combination rule:

Atkm , for € € Nk. (160)

-2
”[l/’k,n + /’ll/c qk,n - !ﬁ[,n]gm”

2N NWip + 1 Qin — '/’j,n]gmn_z

for £ € Ny and m = 1,..., M. Furthermore, we observed in our experiments that

the normalized gradient g, , < ¢q;,/(llg; .|l + €) with € a small positive constant can
increase the robustness of the resulting strategy.

agrm(n) = (1.62)

SIMULATIONS

In this section, we shall first report simulation results that illustrate the theoretical
findings, and then simulate the adaptive grouping and combination weight adjust-
ment algorithms. All agents were initialized with zero parameter vector wy = 0,
for all k. Simulated curves were obtained by averaging over 100 Monte-Carlo runs.

MODEL VALIDATION

We considered the network with N = 12 nodes shown in Fig. 1.2(a). The optimum

parameter vectors {w,j}k"’:1 consisted of L = 15 entries. The first 6 entries were com-
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Figure 1.2 Validation of the mean-square error behavior analysis.

mon across all nodes, that is,
wilg, =...= [w,’\‘,]g] with G =1{1,...,6}. (1.63)

These entries were sampled from a uniform distribution U(—1, 1). The next 4 en-
tries were uniformly sampled from U(—1, 1) for each node, so that there was no
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relationship between the entries of this group, that is,
wrli=uy for ieG,={7,...,10}, (1.64)
with independent u;; sampled from U(—1, 1). The last 5 entries were set to:
wili=wli+u, for iegs={11,...,15}, (1.65)

with [w’]; uniformly sampled from U(—1, 1), identical for all nodes, and i.i.d. pertur-
bations uy; sampled from U(—0.1,0.1). In the sequel, we shall refer to the generative
model (1.63)—(1.65) by S; for short. Observe that nodes did not know this setup
beforehand. Input vectors x, were zero-mean L X 1 random vectors governed by a
Gaussian distribution with covariance matrix Ry = 0' Ar- The noises z;(n) were
iid. zero- mean Gaussian random varlables 1ndependent of any other signal with
variances o i Variances o? o and a? -« used in this experiment were sampled from
U(0.8,1.2) and U (0.18, 0. 22) respectlvely Their values are depicted on the signal-
noise variance plot shown in Fig. 1.2(b).

First, we illustrate the theoretical model with constant combination coefficients
as characterized in Sec. 1.3.3. The following algorithm settings were considered:

e Non-cooperative LMS. This is the limit case where the combination coefficient
matrix A is set to I.

e Diffusion LMS. This is the limit case where there exists only one group. A
uniform combination matrix A with ag = [Nk|™' was used for this experiment.
As for the non-cooperative LMS, this setting was used as a baseline.

e Group diffusion LMS with 3 groups. In this setting, the groups were set ac-
cording to the generative model. For the first group, A; was set to a uniform
combination matrix with ag; = IN:|"!. For the second group, the combination
matrix was set to A, = I. For the third group, the combination matrix was set to
an intermediate version Az = 0.51 + 0.5A,.

e Group diffusion LMS with 5 groups. We split the L entries into five groups of L/5
consecutive entries. A uniform combination matrix A; with ag; = ING ™! was
used for the first group. Matrix A, was generated with the Metropolis rule, that
is, agn = max{|N, ING}! for k € Ni\{k), Ak = 1= Xen\ii A2, otherwise
ag2 = 0, for the second group. The identity matrix was used for the third and
fourth groups, namely, A3 = A4 = I. For the fifth group, the combination matrix
was set to A5 = 0.5 + 0.5A4,.

This experimental setup was considered to test the theoretical models rather than
reveal the performance gain using a grouping strategy. The step size was set to
u = 0.005. The resulting MSD curves are illustrated in Fig. 1.2(c). The theoretical
transient and steady-state MSD were evaluated using (1.52)—(1.54). The theoreti-
cal curves are generally consistent with the Monte Carlo simulated curves. It can
be observed that single-task diffusion LMS algorithm had a large MSD due to the
bias caused by the averaging over the entries of the group G,. Group diffusion LMS
with 3 groups performed the best, since its 3 groups correspond to the generative
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model and we associated reasonable combination coefficients to each group. Group
diffusion LMS with 5 groups performed slightly worse than with the 3 group setting,
because the fourth group overlaps G, and G5 of the generative model. This simu-
lation confirms that a grouping strategy should improve the performance, and also
suggests that it should be adaptive.

10
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Figure 1.3 Comparison of MSD learning curves.
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PERFORMANCE OF THE ADAPTIVE GROUPING
STRATEGY

The aim of this section is to compare the static and adaptive grouping strategies,
along with the adaptive method for setting the combination coefficients. The follow-
ing algorithms and settings were considered:

e Non-cooperative LMS. This non-cooperative algorithm was used as a reference
for the performance comparison.

e Multi-task diffusion LMS in [23]. The number of groups considered with this
algorithm is M = 1. Nodes are, however, endowed with the adaptive combina-
tion function that allows them to adapt the combination weights az in an online
way. This algorithm was also used as a baseline for performance comparison to
illustrate the need for an adaptive grouping strategy.

e Group diffusion LMS with preset groups. First, we considered the same groups
as the generative model. Next we uniformly split the parameter vectors into M
contiguous groups of the same size. With this algorithm, nodes are endowed with
the adaptive combination function only.

e Group diffusion LMS with adaptive grouping strategy. With this algorithm,
nodes are endowed with the adaptive variables grouping function and the adap-
tive combination function.

First, we considered the generative model S| used for model validation in sec-
tion 1.5.1, namely, (1.63)—(1.65). The second generative model we considered, de-
noted by S», consisted of a partition into two groups of the parameter vectors entries.
The first group involved all the odd entries as follows:

*

wilg, =...=[wylg, with G ={1,3,...,15}, for Vk (1.66)
and the second group involved all even entries as follows:
wyli=u, for ieG,=1{2,4,...,14}, for Vk (1.67)

with uy; randomly drawn from U(—1, 1).

Figure 1.3 illustrates the MSD convergence behavior of the algorithms enumer-
ated above. The non-cooperative LMS algorithm can be considered as a baseline
for this comparative test since it does not rely on any cooperation. The multi-
task diffusion LMS considered in [23] reached a slightly larger MSD than the non-
cooperative LMS. This algorithm is able to adjust the combination weights ag in
an adaptive manner, but it cannot take possible group structures into account. It
processed the parameter vectors as if they were significantly different and inhibited
cooperation between nodes. This result reveals the need for a grouping strategy.
By setting the group structure in accordance with the generative model, the group
diffusion LMS with preset groups achieved the lowest MSD for both S; and S.
With M = 3 preset uniform groups, the group diffusion LMS also led to a significant
performance improvement over the non-cooperative LMS for S;, showing that pre-
set groups can be beneficial. With M =5 groups, this algorithm still outperformed
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Figure 1.5 Estimated group structures for the setup S, at different nodes «.

the non-cooperative algorithm. A larger MSD than in the case M = 3 was how-
ever observed, which shows that increasing the number of groups may not always
be beneficial. It is worth noting that the group diffusion LMS with preset groups of
sizes M = 3 and M = 5 led to unfavorable performance with S,. The limits of this
strategy involving preset uniform groups of entries have already been discussed in
Sec. 1.4.1. Finally, the proposed group diffusion LMS with adaptive grouping and
adaptive combination coefficients was run with M = 3 groups. Note that M was thus
voluntarily over estimated for S,. For experimental setups S; and S, it performed
almost as well as when using the ground truth groups. Figures 1.4 and 1.6 show the
group structures at time instants n = 50, 250 and 1000 for group settings S; and Sz,
respectively. The entries encoded with the same color belong to the same group. Fig-
ure 1.5 and 1.7 show the evolution over time of the group structures at nodes k = 1, 6
and 9 for the group settings S; and S, respectively. All these results are consistent
with the generative models.

1.6 CONCLUSION AND PERSPECTIVES

In this paper, we introduced an adaptive grouping procedure into diffusion adapta-
tion to take advantage of structural similarities among parameter vectors to estimate.
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Figure 1.7 Estimated group structures for the setup S,, at different nodes k.

Simulation results illustrated the effectiveness of the grouping strategy and of the
adaptive information fusion rule.

PROOF OF COROLLARY 1

The results below are based on the following properties of the Kronecker product:
vec(XYZ) = (Z7 ® X)vec(Y) and trace(XY) = (vec(Y ")) vec(X),

Then, the first term in (1.49) can be rewritten as follows:
1
(vec{G™)) K"or; = Ntrace(G [B"TB"])
The second term is given by:
1
||r||§(nm = Ntrace(rrT [B"TB”])
The third term can be expressed as follows:

1
Woll? W T 1 1
”wOH(I(NL)z—K)K”o, = Ntrace(wowo [B""B" - B™'TB"™ ])



“main” — 2017/12/16 — 12:28 — page 22 — #22

22 CHAPTER 1 Multitask learning over adaptive networks with grouping strategies

The last term can be rewritten as:
(v7 + BE®W, 1™ ® 7)o, = trace(T) + r" BE{W,)

where I, is defined hereafter. With these expressions, we obtain the following update
equation that now depends on B rather than K:

1
Cnv1 =8 + Ntrace([G + rrT]BnTBn

—Wow, [B""B" - B"'TB"*!| - 2T, - 2BE(w,)r"
The matrix form I'4; of y,,., is updated as follows:

T = BT,B" + Br(B*E{w,})" - r(BE{w,})"
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