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Abstract—This work considers a diffusion network responding
to streaming data, and studies the problem of identifying the
topology of a subnetwork of observable agents by tracking
their output measurements. Topology inference from indirect
and/or incomplete datasets (network tomography) is in general an
ill-posed problem. Under an appropriate Erdös-Rényi random
graph modeling the unobserved part, the problem of network
tomography is well-posed in the thermodynamic limit: when
the number of network agents grows to infinity, any arbitrary
subnetwork topology associated with the observed agents can be
recovered with high probability.

I. INTRODUCTION

This work addresses the problem of inferring the sub-
network topology associated with a subset S of observable
interacting agents or nodes in a network by tracking their states
or output measurements over time. We assume that the state
of each agent evolves over time as a result of the interaction
with its neighbors. Formally, we assume that the state yi(n)
of each node i ∈ {1, 2, . . . , N}, at time n, evolves according
to the following stochastic dynamical system (a.k.a. first-order
vector autoregressive model):

yi(n) =

N∑
`=1

ai` y`(n− 1) + xi(n)⇔ yn = Ayn−1 + xn

(1)
where yn = [y1(n),y2(n), . . . ,yN (n)] is a column vector
collecting the nodes’ states at time n, A = [ai`] is a
combination matrix, and xn = [x1(n),x2(n), . . . ,xN (n)] is
a column vector modeling a random input (e.g., streaming
data or noise). We assume that {xi(n)} are zero-mean and
unit-variance random variables, independent and identically
distributed (i.i.d.) both spatially (i.e., w.r.t. to i) and tempo-
rally (i.e., w.r.t. to n). For example, the dynamical system
in (1) emerges naturally in the context of adaptive diffusion
networks [1]. We observe from (1) that, if ai` = 0, then agent
i does not use the information coming from agent ` to update
its own state. Therefore, the support-graph of A entails the
underlying topology of connections among the agents.

The problem of topology retrieval addressed in this work is
referred to as network tomography because only indirect and
partial observations about the network topology are available.
More specifically, only the output measurements from a subset
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Fig. 1. Illustration of the problem of topology inference under partial
observations. The goal is to estimate the underlying topology via processing
the state-evolution of the observable nodes over time.

of nodes are accessible, and no information is available as
regards the unobserved nodes neither their number — see
Fig. 1 for a sketch of the problem. Under these challenging
conditions, the ultimate goal in this paper is to infer the
topology associated with the subset S of observable agents.

The tomography task amounts to design a scheme to process
the observables — i.e., the state evolution of the observable
nodes — and then estimate the topology. To this aim, it is
useful to observe that the dynamical system in (1) implies the
following relationship among the correlation matrix R0(n) ,
E[yny

T
n ], the one-lag correlation matrix R1(n) , E[yny

T
n−1],

and the combination matrix A:

R1(n) = AR0(n− 1)
n→∞−→ R1 = AR0, (2)

where R0 and R1 are the limiting correlation matrices (we
assume A stable). Therefore, since there exist many ways to
estimate R0 and R1 consistently as n → ∞, the relationship
A = R1R

−1
0 reveals one possible strategy to estimate A (and

hence its support) from the output of the diffusion process,
yn. This is a scheme to consider when the state evolution of
all nodes over time can be observed (full observation).

Let us now consider the fundamental restriction, which
is at the core of this work, that only a subset S of the
network is accessible (partial observation). For this case, the
combination matrix pertaining to the observed subset of nodes
is AS =

[
R1R

−1
0

]
S

, which cannot be computed because
only the submatrices associated with the observable agents,
[R0]S and [R1]S , are available. One could certainly mimic the
relationship AS =

[
R1R

−1
0

]
S

using the truncated estimator:

ÂS = [R1]S ([R0]S)
−1 (3)

It is nonetheless clear from basic linear algebra that ÂS 6= AS .
This notwithstanding, it has been recently shown [2] that the



support of the observable network can be in fact recovered
(consistent tomography) through the truncated estimator in (3),
under certain conditions that will be discussed later. In the
present work, this idea is pursued by addressing the consistent
tomography problem under a novel setting, whose distinguish-
ing features are now contrasted to their relatives in [2].

— Arbitrary network topology. In this work we assume
that the graph of the accessible subnetwork has an arbi-
trary topology, modeled through a deterministic graph. The
unobserved network graph is instead drawn from an Erdös-
Rényi random graph. Such construction matches the classic
“signal + noise” inferential paradigm where the object of the
inference (i.e., the graph of the observable subnet), is modeled
as an arbitrary deterministic signal, whereas the undesired
component (i.e., the unobserved subnet), is modeled as a
noisy component. To get insightful results, one must choose
some model for such random component, and, without any
particular prior information, we opt for a uniform connection
model, where the presence/absence of each edge is determined
through a sequence of i.i.d. Bernoulli experiments (the Erdös-
Rényi graph). In contrast, in [2] it is assumed that the overall
network (observed + unobserved) is drawn from an Erdös-
Rényi random graph. Such a construction poses limitations on
the topology object of the inference, which cannot be selected
in an arbitrary fashion. Moreover, the network construction
used in [2] enforces a vanishing fraction of connected nodes
within the observable set, which is another limitation.

— Low-observability regime. In [2] it is assumed that the
cardinality of the observed set, |S|, scales linearly with N , so
as to ensure that the ratio |S|/N converges to some positive
fraction as N → ∞. In contrast, we assume here that |S| is
fixed. Thus, we want to retrieve the topology of a fixed subnet
embedded in a network that becomes infinitely dominant as
N →∞. The resulting regime is accordingly referred to as a
low-observability regime. We remark that the case where the
ratio |S|/N goes to zero is not addressed (nor can be obtained
from the results) in [2].

A. Related Work and Main Contributions

At a highly-stylized level, the existing approaches to topol-
ogy inference can be categorized in terms of three major
features:
— F1: Class of dynamical systems describing how the state
of the agents evolves over time, e.g., the model in (1).
— F2: Observable state variables, e.g., the process yn in (1).
— F3: Topology-retrieval methods, which should exploit the
entanglement between the observables in F2 and the under-
lying topology implicit in F1. Such methods are sensitive to
the dynamics in F1 and to the observables in F2.

For what concerns F1, most works focus on linear systems.
Nonlinear dynamics are often dealt with by linearizing via con-
sidering variational characterizations of the dynamics (under
small-noise regimes) [3]–[5] or by appropriately increasing the
dimension of the observable space [6], [7]. In the context of
linear (or linearized) systems, particular attention is paid to
autoregressive diffusion models [8]–[11].

For what concerns F2, the most common choice is to track
the output measurements associated to the network nodes.

For what concerns F3, the majority of the literature consid-
ers methods aimed at identifying commonalities between cor-
relation constructs and graph topologies. For instance, in [9], a
nontrivial construct on the correlation matrices is exploited to
infer the underlying combination matrix of a partially observed
system. The inverse problem of recovering the topology via
correlation structures is often addressed through optimization-
based methods, by reinforcing some (application-dependent)
structural constraints such as, e.g., sparsity, stability, symme-
try. For instance, in [10], [11], since the combination matrix
and the correlation matrix share the same eigenvectors, the
set of candidate topologies is reduced by computing these
eigenvectors, and the inverse problem is then tackled with
optimization methods under sparsity constraints.

This work complements the previous efforts by the fol-
lowing contributions. First, we consider a dynamical system
consisting of a diffusion network, under the relevant low-
observability regime where the number of observable agents
is fixed and the size of the network scales to infinity. Second,
we provide a straightforward inference strategy based on a
thresholded version of (3). Third, we show in Theorem 1
further ahead that, for nonnegative symmetric combination
matrices obeying suitable stability conditions (to be detailed
later), any arbitrary topology of the observed set can be
faithfully retrieved as the network size scales to infinity under
an appropriate Erdös-Rényi random graph setting.

II. NOTATION AND PRELIMINARY DEFINITIONS

• We use boldface letters to denote random variables, and
normal font letters for their realizations.
• Given an N × N matrix Z, the submatrix that lies in the
rows of Z indexed by the set S ⊆ {1, 2, . . . , N} and in the
columns indexed by the set T ⊆ {1, 2, . . . , N}, is denoted by
ZST , or alternatively by [Z]ST . When S = T , the submatrix
ZST is simply ZS . In the indexing of the submatrix we will
retain the index set of the original matrix. For example, if
S = {2, 3} and T = {2, 4, 5}, the submatrix M = ZST is:

M =

(
z22 z24 z25
z32 z34 z35

)
=

(
m22 m24 m25

m32 m34 m35

)
. (4)

• G(V ) is the set of undirected graphs defined on a set of
nodes (vertex set) V . When N is the number of nodes, the
shortcut G(N) implicitly implies that the vertex set is V =
{1, 2, . . . , N}. Self-loops will be permitted. Given G ∈ G(N),
and a set S ⊆ {1, 2, . . . , N}, the subgraph corresponding to
S is denoted by GS ∈ G(S). The undirected support graph of
a nonnegative symmetric matrix A is denoted by G(A). The
(i, j)-th entry of its adjacency matrix is I{aij>0}, where IE
denotes the indicator function.
• δi,j(G) is the distance between nodes i and j on graph G,
i.e., the length of the shortest path binding i and j. The r-th
order neighborhood of node i (including i itself), is given by:
N

(r)
i (G) = {j ∈ V : δi,j(G) ≤ r}. When r = 1, we simply

talk of “the neighborhood”, and the superscript (1) is omitted.



• A graph G is an Erdös-Rényi random graph if each edge of
G is drawn, independently from the other edges, with identical
probability pN , and is denoted by G ∼ G (N, pN ). It is known
that, if the connection probability obeys the scaling law:

pN =
logN + cN

N
, with cN

N→∞−→ ∞, (5)

the graph is connected with high probability [12]. Notably,
arbitrariness of cN implies that Erdös-Rényi graphs are con-
nected with high probability even in the nontrivial regime
where pN → 0 as N →∞.

A. Useful Graph Operations

Graph embedding. Given a vertex set V , and a subset
thereof, S ⊂ V , the embedding of a graph G(1) ∈ G(S) into
the larger graph G(2) ∈ G(V ) will be denoted by:

G = G(1)  G(2), G ∈ G(V ), (6)

and results in a graph where: i) the connections among
nodes within S are determined by the graph G(1); ii) all
the remaining connections – linking nodes from S to S′ and
among nodes within S′ are determined by the graph G(2).

Local disconnection. The next operation consists of discon-
necting some nodes of the graph. With the notation:

GU1=U2
∈ G(V ), (7)

we describe the graph obtained from G after removing all the
edges that connect nodes from U1 to nodes in U2.

III. NETWORK GENERATIVE MODEL

Following [2], the combination matrix is obtained through
the following two steps.

— Topology construction. The structure of the graph within
the observable set S will be deterministic and arbitrary. The
structure of the graph in the complement set, S′, and as regards
the connections between S and S′, will be random, following
i.i.d. drawing of the pertinent edges. Accordingly, let G(obs) ∈
G(S) be a deterministic arbitrary graph on the observable set
S, and let G(unobs) ∼ G (N, pN ) be an Erdös-Rényi random
graph on N nodes. The final network graph, G, is defined as:

G = G(obs)  G(unobs) (8)

Connections within the observable set S are thus described
through the graph G(obs), whereas connections within S′, as
well as the connections from S′ to S, are described through
the graph G(unobs). Equation (8) highlights the “signal +
noise” construction, with the boldface notation emphasizing
the random (i.e., noisy) component that corresponds to the
unobserved network portion, and with the normal fonts em-
phasizing the deterministic component that corresponds to
the arbitrary topology of the observed network portion. The
aforementioned construction will be referred to as a partial
Erdös-Rényi graph, and the resulting class of graphs with
input deterministic graph G(obs) = GS placed on set S, will
be represented as G (N, pN , GS). It can be shown that, under

condition (5), also the partial Erdös-Rényi graph is connected
with high probability for any choice of the subgraph GS .

— Combination-weights assignment. A combination policy
γ is a nonnegative matrix-valued function that assigns a
positive weight [γ (G)]ij = [γ (G)]ji > 0 to each connected
pair (i, j) of an undirected graph G, and that assigns zero
otherwise. Thus, G is the support graph of the matrix A ,
γ(G). Also, γ(G) has positive diagonal since we assume that
aii > 0 for all nodes i. We remark that the combination matrix
resulting from such an assignment will be nonnegative and
symmetric. Among other possibilities, these matrices play a
fundamental role in the context of adaptive networks [1].

Next we introduce two technical conditions on A.
Property 1 (Stability): The maximum row-sum norm,

maxi
∑N
`=1 |ai`|, is upper bounded by some ρ < 1.

For nonnegative symmetric matrices, Property 1 becomes:

max
i=1,2,...N

N∑
`=1

ai` = max
i=1,2,...N

N∑
`=1

a`i ≤ ρ (9)

From Property 1 we see that (most of) the combination weights
ai` typically vanish as N gets large, since a finite mass of
value at most ρ must be allocated across an ever-increasing
number of neighbors (on an Erdös-Rényi graph, the number
of neighbors grows as NpN → ∞). The next property
identifies a useful class of combination policies, which has
been introduced in [2], for which degeneracy to zero of the
combination weights is prevented by proper scaling.

Property 2 (Non-degeneracy under (NpN )-scaling): A
combination policy, applied to a partial Erdös-Rényi graph
G ∼ G (N, pN , GS), is non-degenerate under (NpN )-scaling,
if there exists τ > 0 such that, for i 6= j:1

P[NpNaij > τ |aij > 0] ≥ 1− εN (10)

where εN goes to zero as N →∞.
The class of policies with both properties is denoted by Cρ,τ .

Properties 1 and 2 are relevant because they are auto-
matically satisfied by several useful combination policies of
common use. For example, the well-known Metropolis and
Laplacian rules obey both properties [1]. Moreover, Property 2
is useful for tomography purposes because it will let the
interacting pairs stick out from the error floor when the
truncated estimator in (3) is used for topology retrieval. In
order to understand why, we introduce the error matrix:

E , ÂS −AS , (11)

which allows representing the (i, j)-th entry (magnified by
NpN ) of the truncated estimator in (3) as:

NpNaij︸ ︷︷ ︸
not vanishing

+NpNeij , if i and j are connected,

NpNeij , otherwise.

(12)

1For a connected pair (i, j) with i, j ∈ S, Eq. (10) becomes P[NpNaij >
τ ] ≥ 1− εN , since conditioning on a deterministic event is immaterial.



Thanks to (10), the magnified combination matrix is bounded
away from zero at the interacting pairs, which explains the
qualification of being “not vanishing” in (12). According
to (12), if we want that the nonzero entry NpN âij sticks out
from the error floor we should control the error term NpNeij ,
and this is done in the next section.

IV. MAIN RESULT

Preliminarily, let M = [mij ], with i, j ∈ S, be a nonneg-
ative symmetric matrix, and consider a thresholding operator
that compares the off-diagonal entries of M against a threshold
τ > 0, and outputs a graph, Γτ (M) ∈ G(S), whose adjacency
matrix has (i, j)-th entry equal to I{mij>τ}. The entries on
the main diagonal are set to one.

Theorem 1 (Exact recovery of GS): Let GS be a de-
terministic graph (with arbitrary topology), and let G ∼
G (N, pN , GS) be a partial Erdös-Rényi random graph where:

pN =
logN + cN

N
, cN

N→∞−→ ∞, log(NpN )√
logN

N→∞−→ 0

(13)
Let also A = γ (G) be a combination matrix obtained from a
combination policy γ ∈ Cρ,τ , for some 0 < ρ < 1, and some
τ > 0. Then, the graph obtained by applying the thresholding
operator Γτ (·) to the magnified truncated estimator, NpNÂS ,
matches the true support graph, GS , with high probability:

lim
N→∞

P[Γτ (NpNÂS) = GS ] = 1 (14)

�
We remark that condition (13) takes on the practical mean-

ing of imposing a minimum degree of sparsity, since it places a
limitation on the asymptotic growth of cN , and automatically
enforces a vanishing connection probability. As a result, all
the proved results hold in the interesting regime where pN
vanishes and the graph is connected with high probability.

Proof sketch of Theorem 1: It is shown in [2] that the
entries of the error matrix defined in (11) are nonnegative, and,
hence, we can write, for i, j ∈ S:

NpN [ÂS ]ij = NpNaij +NpNeij ≥ NpNaij . (15)

Therefore, from Property 2 we conclude that, if i and j
are interacting nodes, then NpN [ÂS ]ij exceeds a positive
threshold τ with high probability. If we further show that,
for two non-interacting nodes i and j, and for any ε > 0:

P[NpNeij > ε]
N→∞−→ 0 (16)

then we can attain exact (with high probability) classification
via inspection on the truncated estimator ÂS : if NpN [ÂS ]ij >
τ , then classify (i, j) as an interacting pair, otherwise classify
it as non-interacting. We now offer a succinct sketch of proof
that is developed through the following two steps.

Step 1: Relating the error to “large” distances between
nodes belonging to S′. It is shown in [2] that the entries of
the error matrix in (11) can be represented as:

eij =
∑

`,m∈S′

ai`h`mbmj , i, j ∈ S (17)

where:

B , A2, H , (IS′ −BS′)
−1

=

∞∑
k=0

(BS′)k. (18)

From (17) we see that small values of the terms h`m, for
`,m ∈ S′, are desirable to get a small error. Examining the
series in (18), one could haste to prospect a small h`m if nodes
` and m lay far apart in the support graph of BS′ , in light of
the following known fact from matrix algebra [13]:

δ`,m(G(M)) = r ⇔ the smallest k with [Mk]`m > 0 is r,
(19)

which holds for any nonnegative symmetric matrix M . How-
ever, in general the distance between ` and m will be con-
tingent on the topology of subgraph GS , which is unknown.
To get rid of the dependencies on the particular graph GS ,
it is therefore desirable to get some universal relationship
between h`m and the distance between ` and m. To this
aim, we observe that BS′ = [A2]S′ = AS′SASS′ + (AS′)2,
which highlights that the matrix BS′ (and, hence, the matrix
H) does not depend on the matrix AS . For this reason, we
can remove the edges among the observable agents as far
as computing bounds on H goes. This will imply that an
appropriate distance between nodes in S′ to bound h`m is
δ`,m(GS=S), the distance between ` and m on the graph
GS=S where the edges among the observed agents in S have
been removed. By exploiting these observations, the following
theorem can be proved.

Theorem 2 (Bound on H): Given two distinct nodes `,m ∈
S′, we have that:

δ`,m(GS=S) = r ⇒ h`m ≤
ρr

1− ρ2
(20)

According to (20), it is convenient to split the analysis of the
error by considering separately the case of “large” distances
and the case of “small” distances. By simple application of
the law of total probability in (16), we can write:

P[NpNeij > ε] = P[NpNeij > ε|Dsmall]P[Dsmall]

+ P[NpNeij > ε|D′small]P[D′small],(21)

where Dsmall ,
⋃

`,m∈S′

D`,m,

D`,m , {δ`,m(GS=S) ≤ rN , ` ∈ Ni(G),m ∈ N
(2)
j (G)},

(22)
and where

rN ,

⌊
1

2

logN

log(logN + cN )

⌋
(23)

is a sequence of distances that diverges as N →∞ in view of
condition (13). The event in (22) certifies that the distance



on graph GS=S between two distinct nodes, `,m ∈ S′,
does not exceed a prescribed value rN , and also certifies the
membership of nodes ` and m to the pertinent neighborhoods
defined on graph G. Adding these membership is necessary
because the nonzero terms in (17) correspond to nodes ` ∈ S′
that are neighbors of i ∈ S (ai` > 0), and to nodes m ∈ S′
that are second-order neighbors of j ∈ S (bmj > 0).

Now, in view of Theorem 2, and owing to the definition of
Dsmall, it can be proved that large distances imply small errors,
formally: P[NpNeij > ε|D′small] = 0 for sufficiently large N .
As a result, the second term appearing on the RHS in (21) can
be neglected, and it remains to show that small distances are
rare, namely, that P[Dsmall]

N→∞−→ 0.
Step 2: Managing “small” distances. Examining the re-

lationship in (22), two sources of asymmetry emerge. First,
the distance is computed with respect to graph GS=S , while
neighborhood memberships are defined in terms of the original
graph, G. Second, both GS=S and G are non-homogeneous
(because GS is void in the former case, and is arbitrary in
the latter). In order to manage (22) in a compelling way, it
would be instead desirable to find some new graph G̃ with
the following properties: i) it is a homogeneous (i.e., classic)
Erdös-Rényi graph; ii) it is coupled to the original graph
in the sense that, if small distances are rare over a classic
Erdös-Rényi graph, then small distances are rare also over
the coupled partial Erdös-Rényi graph. This result is formally
contained in the forthcoming theorem, stated without proof.

Theorem 3 (Homogenization and coupling): Let G ∼
G (N, pN ;GS) be a partial Erdös-Rényi random graph, and let
G̃ ∼ G (N, p̃N ) be a pure Erdös-Rényi random graph where
p̃N = |S|pN . Consider also the event D̃small ,

⋃
`,m∈S′

D̃`,m,

D̃`,m , {δ`,m(G̃) ≤ rN , ` ∈ Ni(G̃),m ∈ N
(2)
j (G̃)}. (24)

Then, if i, j ∈ S are non-interacting we have that:

P[Dsmall] ≤ P[D̃small] (25)

It is finally possible to show that small distances are rare on
a pure Erdös-Rényi graph, as stated in the following theorem.

Theorem 4 (Small distances): Let G̃ ∈ G (N, pN ) be a pure
Erdös-Rényi random graph. Then, the sequence rN in (23)
ensures that, for sufficiently large N and for all ε > 0:

P[D̃small] ≤ ε̃N ∼ p̃N (Np̃N )rN+2 (26)

and that the RHS of (26) vanishes as N →∞.
Applying jointly Theorems 3 and 4, we conclude that the
second term on the RHS of (21) vanishes as N →∞.

V. ILLUSTRATIVE EXAMPLE

In Fig. 2 we depict the error probability in the topology
recovery for the setting detailed in the caption. Two algorithms
are considered for topology recovery. The first algorithm uses
directly Theorem 1, namely, it employs a thresholding operator
with the threshold τ that characterizes the class Cρ,τ that the
pertinent combination rule belongs to. The second algorithm
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Fig. 2. Probability of topology recovery as a function of the overall
network size, for an observable subnet with 10 nodes. The network evolution
follows (1) with Gaussian data, ρ = 0.9, and Laplacian combination rule [1].

is a k-means algorithm (hence, nonparametric) that attempts
splitting into two clusters the entries of the truncated estimator
ÂS , without any prior knowledge. We display also the curves
corresponding to the relevant practical case where the correla-
tion matrices [R0]S and [R1]S are not known beforehand, and
are estimated from the streaming outputs collected from the
observable set S. It is seen from Fig. 2 that the probability of
correct recovery converges to one as the network size grows.
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