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ABSTRACT

This work studies the problem of inferring from streaming data

whether an agent is directly influenced by another agent over an

adaptive network of interacting agents. Agent i influences agent j if

they are connected, and if agent j uses the information from agent

i to update its inference. The solution of this inference task is chal-

lenging for at least two reasons. First, only the output of the learning

algorithm is available to the external observer and not the raw data.

Second, only observations from a fraction of the network agents is

available, with the total number of agents itself being also unknown.

This work establishes, under reasonable conditions, that consistent

tomography is possible, namely, that it is possible to reconstruct the

interaction profile of the observable portion of the network, with

negligible error as the network size increases. We characterize the

decaying behavior of the error with the network size, and provide a

set of numerical experiments to illustrate the results.

Index Terms— Diffusion networks, network tomography, com-

bination policy, Erdös-Rényi model.

1. INTRODUCTION

One fundamental challenge of network science is the inverse mod-

eling problem. In this problem, the network structure (topology)

is unknown and one is interested in inferring relationships between

network agents based on data arising from their activities. Inverse

network modeling is usually challenging because: i) the inference

of inter-agent relations must be based on indirect observations, with

direct access to the data at the agents being impossible or imprac-

tical; and ii) the access to observations is limited to a subset of

the network agents. The process of discovering inter-agent inter-

actions from indirect/partial measurements is broadly referred to as

network tomography. This work addresses network tomography for

the class of adaptive networks, which can be succinctly described

as an ensemble of dispersed agents exchanging information through

diffusion mechanisms, so as to deliver simultaneous adaptation and

learning from streaming data [1–6].

The problem of retrieving a graph topology from indirect mea-

surements taken at some accessible network locations falls under

the umbrella of signal processing over graphs [1, 2, 7–9]. Several

works have considered similar problems, albeit with different spe-

cific goals. For space limitations, we provide here only a compact

list of works that are most related to the present article. In [10], the

locality properties of Wiener filters are exploited to provide exact

reconstruction for specific network types. In [11], directed infor-

mation graphs are considered in order to exploit the effect of causal
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dynamics. Particularly relevant for our work is the case where the re-

lationship between agents obeys an autoregressive diffusion model,

see, e.g., [12–14], and [15,16], where additional sparsity constraints

are exploited in conjunction with the spectral graph properties. The

case of unobserved nodes is considered in [17], where sufficient con-

ditions for the identification of a given link are offered, in terms of

some structural constraints on the network topology. Estimation of

covariance matrices with missing data is addressed in [18].

This work complements these previous efforts by answering the

following questions. We consider a diffusion network solving some

inference task (such as a distributed detection problem). The net-

work size is unknown, and the outputs of the diffusion algorithm

are available from only a limited subset of agents. The goal is es-

tablishing whether an individual agent is influencing another indi-

vidual agent. For the class of Erdös-Rényi random graphs running

diffusion strategies with symmetric combination matrices, we dis-

cover that the group of interacting agent pairs and the group of non-

interacting agent pairs split into two well-defined clusters, for any

(nonzero) fraction of observable agents. These clusters emerge as

clearly separate for sufficiently large network sizes, so that the inter-

action relationships within the observable network can be recovered

with negligible error. In this way, we establish that consistent tomog-

raphy from partially observed networks is achievable.

Notation. Boldface letters denote random variables, normal font

their realizations. Capital letters refer to matrices, small letters to

vectors or scalars. The (i, j)-th entry of a matrix Z is denoted by

zij , or by [Z]ij . The sub-matrix of Z corresponding to the rows

indexed by S1 and the columns indexed by S2 is denoted by ZS1S2

(or [Z]S1S2
). The notation ZS (or [Z]S) is used when S1 = S2 = S.

2. THE NETWORK TOMOGRAPHY PROBLEM

A network of N agents gathers streaming data from the environment.

The datum of the i-th agent at time n is denoted by xi(n), and the

data are spatially and temporally independent and identically dis-

tributed random variables, with zero mean and unit variance. The

agents implement a distributed adaptive strategy, where each agent

relies on sharing information with local neighbors. In this work we

focus on the Combine-Then-Adapt (CTA) diffusion strategy, whose

properties in terms of estimation and online learning performance

have been already studied in detail — see, e.g. [1, 2, 5, 6]. The CTA

algorithm can be described as follows. The output variable of the

i-th agent at time n is denoted by yi(n) During the combination

step, agent i mixes the output variables received from its neighbors

by using a sequence of convex (i.e., nonnegative and adding up to 1)

combination weights wiℓ, giving rise to the intermediate variable:

vi(n− 1) =

N∑

ℓ=1

wiℓ yℓ(n− 1). (1)



Then, during the adaptation step, agent i updates its output variable

by comparing with the incoming streaming data xi(n) and using

some small step-size µ ∈ (0, 1):

yi(n) = vi(n− 1) + µ[xi(n) − vi(n− 1)]. (2)

These two steps can be compactly represented by a single equation:

yi(n) = (1− µ)

N∑

ℓ=1

wiℓ yℓ(n− 1) + µxi(n). (3)

It is convenient to introduce the scaled combination matrix A, with

entries aij , (1− µ)wij . Since we use a sequence of convex com-

bination weights, the matrix A/(1− µ) is a right-stochastic matrix.

Moreover, in this work we focus on the case of symmetric combi-

nations matrices, and, hence, A/(1− µ) is doubly-stochastic. If we

now stack the data into the N×1 vector xn, and the output variables

into the N × 1 vector yn, Eq. (3) becomes:

yn = Ayn−1 + µxn ⇒ yn = µ

n∑

m=1

An−m
xm, n ≥ 1, (4)

where, in the rightmost equality, we assume y0 = 0. That is, we

neglect the transient term.

2.1. Network Tomography

A Tomography Center (TC) is interested in establishing which agent

is influencing which other agent. The TC collects the streams of

outputs exchanged by a subset of the network agents. Letting Ω ⊂
{1, 2, . . . , N} be the observable subnet, the data available to the TC

at time n are {yi(1), yi(2), . . . ,yi(n)}i∈Ω. We consider the regime

of large networks (N → ∞) and the case where the fraction of

observed agents does not vanish. In other words, if we let K =
|Ω|, then we assume that (K/N) → ξ, where ξ ∈ (0, 1) is the

asymptotic fraction of observed agents. In our setting, the overall

network size is unknown, and the goal of the TC is to produce an

estimate of the interaction profile for the observed agents.

Let us ignore for the moment the partial-observability limitation.

Assuming that the TC is able to collect all output sequences from all

agents at all times, there exist in principle several well-established

solutions to infer whether an agent influences another agent. When

choosing one particular solution, however, it is necessary to take into

account the following peculiar aspect related to the streaming nature

of the data. In general, when the TC starts working, the network

would have been in operation since some time already. As a result,

the agents’ outputs would have benefited from substantial exchange

of information. While this can be beneficial for the solution of the

inference problem by the agents, it can however become detrimental

for retrieving the network topology. This is because (over a strongly

connected network and after a transient stage), all agents would be-

come mutually correlated.

In order to overcome this difficulty, one can exploit knowledge

of the diffusion mechanism. Let us introduce the correlation matrix,

R0(n) , E[yny
T
n ], and the one-lag correlation matrix, R1(n) ,

E[yny
T
n−1], of the diffusion output vector, which, using (4), can be

written as:

R0(n) = µ2
n−1∑

i=0

A2i n→∞
−→ R0 = µ2(IN − A2)−1,

R1(n) = AR0(n− 1)
n→∞
−→ R1 = AR0, (5)

where IN is the N × N identity matrix. From (5) we obtain the

following relationships, for n ≥ 2:

A = R1(n)(R0(n− 1))−1 ⇒ A = R1R
−1
0 , (6)

and since there are several ways to estimate R0 and R1 consistently

as n → ∞, expression (6) reveals that estimating A from the diffu-

sion output is in principle feasible.

Unfortunately, in our setting the approach described so far suf-

fers from a problem: not all entries in the matrices R0 and R1 are

available since the network is only partially observed. In order to

estimate the (sub-)matrix, A(obs) , AΩ, corresponding to the observ-

able subnet, it is tempting to replace R0 and R1 by their observable

counterparts, R(obs)
0 , [R0]Ω, and R(obs)

1 , [R1]Ω, yielding:

Â(obs) = R(obs)
1 (R(obs)

0 )−1
(7)

Needless to say, the calculation on the right-hand side of (7) does

not lead to the true A(obs). Therefore, it is not clear at all whether the

mutual influence relationships existing between the observed nodes

can be consistently retrieved from Â(obs). Answering this nontrivial

question in the affirmative is the main contribution of this work.

3. ERROR DUE TO PARTIAL OBSERVATIONS

We are interested in establishing whether the estimated values â(obs)
ij

(for i 6= j) allow us to identify the condition a(obs)
ij > 0 or a(obs)

ij =
0, which would reveal whether agents i and j influence each other.

To this end, we start by introducing, with reference to (7), an error

matrix E:

â(obs)
ij = a(obs)

ij + eij , (i, j = 1, 2, . . . ,K), (8)

whose behavior is characterized in the next theorem, stated without

proof for space limitations. Details can be found in [21].

Theorem 1 (Concentration of errors) For a symmetric combina-

tion matrix, the entries of the error matrix defined in (8) are nonneg-

ative, and satisfy for all i = 1, 2, . . . ,K:

K∑

j=1

eij ≤ 1− µ (9)

�

Theorem 1 provides useful information about the concentration

of the entries in the error matrix. Consider now a small threshold

ǫ > 0, and the fraction of off-diagonal (because we are interested in

inter-agent interactions) entries exceeding such threshold, namely,

1

K(K − 1)

K∑

i=1

∑

j 6=i

I{eij > ǫ}, (10)

with I{·} being the indicator function. Using Theorem 1, it can be

shown that such fraction is upper bounded by the quantity 1−µ

ǫ(K−1)
,

which vanishes because in our setting K → ∞ as N → ∞. As a re-

sult, most entries of the error matrix will be small for large networks,

implying, for i 6= j:

â(obs)
ij =







a(obs)
ij + small quantity, if a(obs)

ij > 0,

small quantity, if a(obs)
ij = 0.

(11)

This useful splitting suggests that the nonzero entries of A(obs) will

make the estimated entries â(obs)
ij stand out above the error floor as N

increases, which in turn suggests that the network graph can be re-

trieved by comparing the estimated value, â(obs)
ij , against some thresh-

old. However, the behavior of the error matrix alone is not sufficient



to conclude that this procedure is effective. This is because, for typ-

ical combination matrices, the nonzero entries a(obs)
ij vanish with N

as well, implying that the estimated entries, â(obs)
ij , would vanish even

when agents i and j are interacting. For this reason, it is necessary

to assess how fast the error signals eij decay to zero in relation to the

desired entries a(obs)
ij . The forthcoming sections address such analy-

sis, with reference to some popular random models used to describe

the network structure formation.

4. INTERACTING AGENTS ON RANDOM GRAPHS

The interaction profile will be described through a symmetric ma-

trix G, with gij = 1 if agents i and j interact, and gij = 0 other-

wise. We assume that an agent always uses its own output variable in

the combination step, implying that gii = 1. The combination ma-

trix will be constructed through the following two-step procedure.

First, an interaction matrix G is generated according to a random

graph model [19, 20]. Then, A = γ(G) is determined by a combi-

nation policy, γ(G), which assigns the values aij corresponding to

the nonzero entries of G. In particular, γ(G) always assigns positive

weights at the locations corresponding to nonzero entries of G, and

[γ(G)]ij = [γ(G)]ji.
The random graph model we consider is the classic Erdös-Rényi

model [19, 20]. This model, denoted by G (N, pN ), is an undirected

graph where the presence of the N(N−1)/2 edges is determined by

a sequence of N(N − 1)/2 independent Bernoulli random variables

with success probability pN . A well-known result that holds true for

the Erdös-Rényi graph is that the scaling law pN = 1
N
(lnN + cN),

with cN → ∞, ensures that the graph is connected, with probability

tending to 1 as N diverges [20]. In the following, we focus on the

regime of connected Erdös-Rényi graph with vanishing pN , namely,

on the regime where cN → ∞ and pN → 0. This regime will be

denoted by the symbol G
⋆(N, pN).

Let us now examine on the asymptotic behavior of the (off-

diagonal) nonzero entries in the combination matrix. We start by

considering a popular combination policy, the Laplacian rule, which

is defined, for 0 < λ ≤ 1, as [1]:

aij =







gij (1− µ)λ/dmax, for i 6= j,

(1− µ)−
∑

ℓ 6=i
aiℓ for i = j,

(12)

where dmax is the maximal degree of the graph, with the degree of

agent i (denoted by di), being the number of its neighbors including i
itself. Now, for an Erdös-Rényi graph, the random variable di−1 is a

binomial random variable with parameters N−1 and pN . Therefore,

we see that the degrees of the nodes scale as NpN . Since dmax is the

maximum of N degrees, it is expected to grow faster than NpN .

Interestingly, the next lemma shows that it cannot grow much faster.

Lemma 1 (Maximal degree) Under the G
⋆(N, pN ) model we

have, for all i, j = 1, 2, . . . , N , with i 6= j:

P[dmax ≥ NpNe | gij = 1] ≤

(

e+
2e2

N

)

e−cN N→∞
−→ 0 (13)

where e is Euler’s number. �

Applying Lemma 1 to (12) we can write, for all i 6= j:

P[NpNaij > (1− µ)λ/e | gij = 1]

= P[dmax < NpNe | gij = 1]
N→∞
−→ 1. (14)
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Fig. 1. A pictorial illustration of Theorem 2: the scaled estimated

entries â(obs)
ij cluster in two groups depending on whether agents i

and j are interacting or not.

Equation (14) reveals that, for large N , the nonzero entries of the

Laplacian combination matrix, magnified by the factor NpN , stay

“almost always” above a certain threshold, and, hence, the magnified

nonzero entries will not vanish as N diverges. The same scaling

factor is in fact relevant for other combination policies, leading to the

formulation of the following general class of combination policies.

Combination-policy class Cτ . A combination policy belongs to

class Cτ if there exists τ > 0 such that, for all i, j = 1, 2, . . . , N ,

with i 6= j:

P[NpNaij > τ | gij = 1] ≥ 1− ǫN (15)

where ǫN goes to zero as N → ∞, and where the probability is

evaluated under the G
⋆(N, pN) model. �

Let us now examine the physical meaning of (15) in connection

to network tomography applications. For a policy belonging to class

Cτ , we can rephrase (11) as:

NpN â(obs)
ij =







NpNa(obs)
ij

︸ ︷︷ ︸
not vanishing

+ NpNeij
︸ ︷︷ ︸

small quantity?

, if a(obs)
ij > 0,

NpNeij
︸ ︷︷ ︸

small quantity?

, if a(obs)
ij = 0,

(16)

where the “not vanishing” behavior follows by (15). According

to (16), if we can prove that NpNeij is still a small quantity, then

â(obs)
ij would be useful for tomography purposes, because the magni-

fied nonzero entry NpNa(obs)
ij would stand out from the error floor

as N gets large. Actually, using Theorem 1 it is possible to show

that this desirable property holds true, enabling therefore consistent

tomography, as will be formally stated in Theorem 2 further ahead.

5. CONSISTENT TOMOGRAPHY

Let us introduce the number of non-interacting (N0) and the number

of interacting (N1) agent pairs over the observed set:

N0 ,

K∑

i=1

∑

j 6=i

(1− g
(obs)
ij ), N1 ,

K∑

i=1

∑

j 6=i

g
(obs)
ij , (17)

where g
(obs)
ij = I{a(obs)

ij > 0}. Next we introduce the number of

entries in NpN Â(obs) that stay below some positive level α, for non-
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Fig. 2. Network tomography for the case of a Laplacian combination rule in (12), with parameter λ = 0.5. The network size is N = 100,

where only K = 20 agents are observable. The interaction probability is pN = 2 (lnN)/N ≈ 0.092, and the step-size is µ = 0.1.

interacting and interacting agent pairs, respectively:

N0(α) ,

K∑

i=1

∑

j 6=i

I{NpN â
(obs)
ij ≤ α, g(obs)

ij = 0}, (18)

N1(α) ,

K∑

i=1

∑

j 6=i

I{NpN â
(obs)
ij ≤ α, g(obs)

ij = 1}. (19)

Finally, we introduce the conditional empirical distributions given

that the agents are not interacting and given that they are interacting,

namely, F0(α) = N0(α)/N0, and F1(α) = N1(α)/N1, where

F0(α) (resp., F1(α)) is conventionally set to 1/2 when N0 = 0
(resp., N1 = 0). The next theorem establishes achievability of con-

sistent tomography through the asymptotic characterization of the

aforementioned empirical distributions (Details on the proof can be

found in [21]).

Theorem 2 (Achievability of consistent tomography) Let the net-

work interaction profile obey a G
⋆(N, pN) model, and let the com-

bination policy belong to class Cτ . Then, for any asymptotic fraction

of observable agents, ξ > 0, we have:

F0(ǫ)
p

−→ 1 ∀ǫ > 0, F1(τ )
p

−→ 0 (20)

where
p

−→ denotes convergence in probability as N → ∞. �

Theorem 2 reveals the following useful dichotomy: i) when

agents i and j are not interacting, most of the (magnified) estimated

matrix entries stay below an arbitrarily small level ǫ; ii) when

agents i and j are interacting, most of the (magnified) estimated

matrix entries stay above a positive value τ . Therefore, two separate

clusters emerge, one corresponding to the region NpN â(obs)
ij ≤ ǫ,

and the other one corresponding to the region NpN â(obs)
ij > τ . This

situation is illustrated in Fig. 1. Theorem 2 reveals also that, in the

limit of large network sizes, the consistent tomography property

does not depend on the fraction of observable nodes, ξ.

When prior knowledge about τ and NpN is available, Theo-

rem 2 provides a direct recipe to reconstruct the interaction profile.

In the lack of such knowledge, the existence itself of the clustering

structure opens up the possibility of employing non-parametric pat-

tern recognition strategies to perform cluster separation We give an

example of this possibility in the next section.

6. ILLUSTRATIVE EXAMPLES

We now examine the practical significance of the asymptotic results

derived in the previous sections. In the simulations, we use the

Laplacian combination rule, while the observations xi(n) fed into

the diffusion algorithm follow a standard normal distribution. The

interaction profile is retrieved by using the off-diagonal entries of

Â(obs), and applying a k-means clustering algorithm in order to split

these entries into two clusters. We consider two cases: (a) the case

in which the exact correlation matrices are known, and (b) the case

in which they must be estimated from the diffusion outputs. In the

latter case, as an estimator for R(obs)
0 and R(obs)

1 we use the empirical

correlations, and we compute (7) by replacing R0 and R1 with their

estimates.

In Fig. 2, leftmost panel, we display the off-diagonal entries

of the (magnified) true combination matrix corresponding to the

observable subnet. The matrix has been vectorized by means of

column-major ordering, and the (vectorized) (i, j) pairs have been

rearranged in such a way that the zero entries appear before the

nonzero entries. The same ordering used for A(obs) will be then ap-

plied to the matrices displayed in the remaining panels. Interacting

agent pairs are marked by a red square, whereas non-interacting

pairs with a blue circle. The observed step-function behavior comes

from the fact that, for the Laplacian combination rule, the nonzero

weights are constant across the network.

In the middle panel we display the estimated matrix, NpN Â(obs),

computed under perfect knowledge of R(obs)
0 and R(obs)

1 , and we show

the classification performed by the k-means algorithm. In the right-

most panel the same type of analysis is reported, but the estimated

matrix is computed using the empirical correlation matrices. In the

latter two panels, matrix entries are marked in a way that depends

on the results of the clustering: blue-circles if agents i and j are

classified as non-interacting, whereas red-square markers if they are

classified as interacting. Examining the middle panel, we see that the

experiments confirm the theoretical analysis, since the entries of the

matrix Â(obs) are well-separable. Examining the rightmost panel in

comparison with the middle panel, we see that the estimated clusters

are more “noisy”, which produces a few classification errors. Such

a behavior makes sense since the procedure applied in the rightmost

panel must be affected by the error in estimating R(obs)
0 and R(obs)

1 .

In the inset plots we display the network graphs (of the observ-

able subnet) corresponding to the strategy addressed in the pertinent

panel. Such graphs are drawn with the following rules. An edge

drawn from j to i means that agent i is influenced (leftmost panel) or

is estimated to be influenced (middle and rightmost panels) by agent

j. When an edge is erroneously detected (i.e., the edge is not present

but the tomography algorithm “sees” it), it is marked in magenta.

Likewise, when an edge is not detected (i.e., the edge is present but

the tomography algorithm misses it), it is marked in cyan.
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