
A Preconditioned Graph Diffusion LMS for
Adaptive Graph Signal Processing
Fei Hua∗†, Roula Nassif‡, Cédric Richard†, Haiyan Wang∗, Ali H. Sayed‡

∗School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
† Laboratoire Lagrange, Université Côte d’Azur, OCA, CNRS, Nice 06108, France

‡Ecole Polytechnique Fédérale de Lausanne, Switzerland
Email: fei.hua@oca.eu; roula.nassif@epfl.ch; cedric.richard@unice.fr; hywang@nwpu.edu.cn; ali.sayed@epfl.ch

Abstract—Graph filters, defined as polynomial functions of a
graph-shift operator (GSO), play a key role in signal processing
over graphs. In this work, we are interested in the adaptive and
distributed estimation of graph filter coefficients from streaming
graph signals. To this end, diffusion LMS strategies can be
employed. However, most popular GSOs such as those based
on the graph Laplacian matrix or the adjacency matrix are not
energy preserving. This may result in a large eigenvalue spread
and a slow convergence of the graph diffusion LMS. To address
this issue and improve the transient performance, we introduce
a graph diffusion LMS-Newton algorithm. We also propose a
computationally efficient preconditioned diffusion strategy and we
study its performance.

Index Terms—Graph signal processing, graph filter, diffusion
LMS, LMS-Newton, preconditioned LMS.

I. INTRODUCTION

Graphs are a powerful modeling tool for network-structured
applications such as sensor networks, smart grids, communi-
cation networks, social networks, etc. Data generated by these
applications often lie on complex and irregular structures, and
require appropriate graph signal processing (GSP) techniques
to be analyzed and manipulated. As an extension of classical
signal processing techniques applied to data on graphs, GSP
has attracted increasing attention in the last few years [1]–[3].
Recent results include sampling [4]–[6], spectral analysis [7]–
[9], and filtering [10]. Most of this literature however focuses
on static graph signals, i.e., signals that need not evolve with
time. There have been extensive prior work on handling stream-
ing signals over graphs and on designing adaptive learning
strategies for such scenarios, e.g., [11], [12] and the references
therein. Since many network-structured applications involve
dynamic signals and need an appropriate formalism, some
recent studies started applying these ideas to streaming graph
signals [13]–[15]. Graph filters play a key role in GSP. The aim
of this paper is to blend concepts from adaptive networks [16]
and GSP to estimate graph filter coefficients from dynamic
graph signals.

The work of F. Hua was supported in part by China Scholarship Council
and NSFC grant 61471298. The work of C. Richard was supported in
part by Idex UCA-Jedi (ACADY project) and CNRS Mastodons (AGADIR
project). The work of H. Wang was partly supported by NSFC under grants
61401364, 61571365, 61671386 and National Key R&D Program of China
(2016YFC1400200). The work of A. H. Sayed was supported in part by NSF
grants CCF-1524250 and ECCS-1407712.

We consider a graph G consisting of a set N of N nodes, and
a set E of edges such that if node k is connected to node `,
then (k, `) ∈ E . Let Nk denote the neighborhood of node k
including k, namely, Nk = {` : ` = k ∨ (`, k) ∈ E}. Graph
signals are defined as x = [x1, . . . , xN]> ∈ RN where xk
is the signal sample residing on node k. Let x(i) denote the
graph signal at time i. We assume that the graph is endowed
with a GSO defined as an N ×N shift matrix S whose entry
sk` can be non-zero only if k = ` or (k, `) ∈ E . The shift
matrix captures the graph topology. Possible choices include
the adjacency matrix, the graph Laplacian matrix, and their
normalized counterparts [1]. Operation Sx is called graph shift.
It can be performed locally at each node k by linearly combing
the samples x` from its neighboring nodes ` ∈ Nk.

In this paper we consider linear shift-invariant FIR graph fil-
ters H : RN×N → RN×N of order M , which are polynomials
of the graph-shift operator [3]:

H ,
M−1∑
m=0

homS
m, (1)

where ho = {hom}M−1m=0 are the filter coefficients. One common
filtering model assumes that the filtered graph signal y(i) is
generated from the input graph signal x(i) as follows [3], [14]:

y(i) =Hx(i) + v(i) =

M−1∑
m=0

homS
mx(i) + v(i), (2)

where v(i) = [v1(i), . . . , vN (i)]> ∈ RN denotes an i.i.d. zero-
mean noise independent of any other signal and with covariance
matrix Rv = diag{σ2

v,k}Nk=1.
The problem is to estimate the filter coefficients ho adap-

tively from streaming input graph signals x(i) and output
signals y(i). To this end, graph diffusion LMS strategies [15]
can be employed. Nevertheless, most popular GSO are based on
the graph Laplacian matrix or the adjacency matrix, which are
not energy preserving. This may result in a large eigenvalue
spread in the mean-square-error criterion to minimize and,
consequently, a slow convergence speed of the diffusion LMS.
To address this issue and improve the transient performance, we
introduce a graph diffusion LMS-Newton algorithm. Central-
ized and distributed solutions are studied in Sections II and III,

respectively. A performance analysis is provided in Section IV,
and simulation results are reported in Section V.

Notation: We use the symbol ⊗ to denote Kronecker oper-
ation and the symbol Tr(·) to denote the trace operator. The
symbol λmax(·) denotes the maximum eigenvalue of its matrix
argument. The m-th entry of a vector x is denoted by [x]m,
the (m,n)-th entry of a matrix X is denoted by [X]mn, the
k-th row of a matrix X is [X]k,•.

II. CENTRALIZED SOLUTION

As explained in [15], model (2) is static and assumes the
instantaneous diffusion of information. Specifically, relation (2)
assumes that the powers of the shift operator, Sm, are applied
to the same graph vector x(i). This assumption is a serious
limitation. To enrich the model, and to introduce a temporal
dimension into (2), we consider the more general model intro-
duced in [15]:

y(i) =
M−1∑
m=0

homS
mx(i−m) + v(i), i ≥M − 1. (3)

In this way, the shift Sm is carried out in m time slots. By
retaining the following shifted signals at each node `:

x`(i− 1), [Sx(i− 2)]`, . . . , [S
M−2x(i−M + 1)]`,

only one graph shift is required at each time i to carry out the
filtered signal. Let Z(i) denote an N ×M matrix given by:

Z(i) ,
[
x(i), Sx(i− 1), . . . ,SM−1x(i−M + 1)

]
, (4)

then model (3) can be written alternatively:

y(i) = Z(i)ho + v(i), i ≥M − 1. (5)

To estimate ho, we consider the mean-square-error criterion:

J(h) = E‖y(i)−Z(i)h‖2 (6)

By setting the gradient vector of J(h) to zero, the optimal
parameter vector ho can be found by solving:

RZh
o = rZy (7)

where, assuming stationarity, the M ×M matrix RZ and the
M × 1 vector rZy are given by:

RZ , E{Z>(i)Z(i)}, rZy , E{Z>(i)y(i)}. (8)

In the sequel, we assume that x(i) is a zero-mean wide-sense
stationary process, that is, E{x(i)} = 0 and its autocorrelation
sequence Rx(m) , E{x(i)x>(i − m)} is a function of the
time lag m only. It can be checked that the (m,n)-th entry of
the matrix RZ is given by [15]:

[RZ]m,n = Tr
(
(Sm−1)>Sn−1Rx(m− n)

)
. (9)

The m-th entry of the vector rZy is given by [15]:

[rZy]m = Tr
(
(Sm−1)>Rxy(m)

)
, (10)

where Rxy(m) , E{y(i)x>(i −m)} is the cross correlation
function, which is independent of time i.

Instead of solving (7), ho can be sought iteratively by using
the gradient-descent method:

h(i+ 1) = h(i) + µ
[
rZy −RZh(i)

]
, (11)

with µ > 0 a small step-size. Since the second-order moments
are usually unavailable, one possible way is to replace them by
the following instantaneous approximations RZ ≈ Z>(i)Z(i)
and rZy ≈ Z>(i)y(i). This yields the following LMS graph
filter [15]:

h(i+ 1) = h(i) + µZ>(i)
[
y(i)−Z(i)h(i)

]
. (12)

This stochastic-gradient algorithm is referred to as the central-
ized graph-LMS algorithm. In this centralized setting, each node
at each time instant sends its data {xk(i), yk(i)} to a fusion
center which will update h(i) according to (12). Note that the
step-size µ in (12) must satisfy 0 < µ < 2

λmax(RZ) in order
to guarantee stability in the mean under certain independence
conditions on the data [17].

Observe that RZ in (8) is the correlation function of shifted
graph signals. It is shown in [18] that graph shift operators
do not preserve energy in general. This is due to the fact that
the modulus of the eigenvalues of the shift operator S are not
uniformly equal to 1. It is known that the convergence rate
of the LMS is slow when the eigenvalue spread is large [17].
Based on diffusion strategies and pre-conditioning, we address
this issue in the following with two algorithms that allow
to estimate ho efficiently in a fully distributed and adaptive
manner. Compared with the standard graph diffusion LMS
solution presented in [15], pre-conditioning will improve the
convergence rate albeit at an increased computational cost.

III. DIFFUSION LMS STRATEGIES OVER GRAPH SIGNALS

From model (5), sample yk(i) at node k can be written as:

yk(i) = z
>
k (i)h

o + vk(i), with i ≥M − 1, (13)

where z>k (i) is k-th row of Z(i) given by:

zk(i) , col{[x(i)]k, [Sx(i−1)]k, . . . , [SM−1x(i−M+1)]k}.
(14)

As explained before, it is important to note that by retaining
the shifted signals {Sm−1x(i −m) : m = 1, . . . ,M − 1} at
each node ` in the network from previous iterations, zk(i) can
be computed locally at node k from its one-hop neighbors at
each iteration i. Let Rz,k , E{zk(i)z>k (i)} denote the M×M
covariance matrix with (m,n)-th entry given by [15]:

[Rz,k]m,n = Tr
(
[Sm−1)]>k,•[S

n−1]k,•Rx(m− n)
)
. (15)

Considering the mean-square-error cost Jk(h) at node k:

Jk(h) = E|yk(i)− z>k (i)h|2, (16)

the global cost (6) can be written as:

J(h) =

N∑
k=1

Jk(h). (17)

Diffusion strategies minimize (17) in an adaptive and fully
distributed manner [12]. In particular, the adapt-then-combine

(ATC) diffusion LMS takes the following form at node k [15]:

ψk(i+ 1) = hk(i) + µkzk(i)
[
yk(i)− z>k (i)hk(i)

]
, (18a)

hk(i+ 1) =
∑
`∈Nk

a`kψ`(i+ 1), (18b)

where µk > 0 is a local step-size parameter and {a`k} are
non-negative combination coefficients chosen to satisfy:

a`k > 0,
∑N

`=1
a`k = 1, and a`k = 0 if ` /∈ Nk. (19)

This implies that the matrix A with (`, k)-th entry a`k is
a left-stochastic matrix, which means that the sum of each
of its columns is equal to 1. In the first step (18a), which
corresponds to the adaptation step, each node k uses the data
from its one-hop neighbors to compute zk(i), then updates its
local estimate hk(i) to an intermediate estimate ψk(i+ 1). In
the second step (18b), which is the combination step, node k
aggregates all the intermediate estimates ψ`(i + 1) from its
neighbors to obtain the updated estimate hk(i+ 1).

From (14), we observe that the regressors zk(i) used in the
adaptation step (18a) result from shifted graph signals where
the shift matrix S is not energy preserving in general. In this
case, the eigenvalue spread of Rz,k may be large and the
LMS update may suffer from slow convergence speed. One
way to address this issue, albeit at an increased computational
complexity, is to employ a form of Newton’s method, i.e.,

ψk(i+1) = hk(i)−µk[∇2
hJk(hk(i))]

−1[∇hJk(hk(i))], (20)

where ∇2
hJk(·) is the Hessian matrix of Jk(·) and ∇hJk(·)

is its gradient vector. For the quadratic cost function (16), the
adaptation step (20) can be written as:

ψk(i+ 1) = hk(i) + µkR
−1
z,k

[
rzy,k −Rz,khk(i)

]
, (21)

where rzy,k = E{zk(i)yk(i)}. Note that the second term
on the RHS of (21) requires second-order moments that are
rarely known beforehand. We replace rzy,k − Rz,khk(i) by
the instantaneous approximation:

rzy,k −Rz,khk(i) ≈ zk(i)ek(i) (22)

where ek(i) = yk(i) − z>k (i)hk(i). The LMS-Newton for the
adaptation step (21) can be written as:

ψk(i+ 1) = hk(i) + µkR̂
−1
z,k(i)zk(i)ek(i), (23)

where R̂
−1
z,k(i) can be obtained recursively. Since most popular

GSOs are not energy preserving, Rz,k may be close to singular.
The inverse R−1z,k then would be ill-conditioned and may have
undesirable effects. To address this problem, it is common
to employ regularization [17]. We obtain the diffusion LMS-
Newton algorithm:

ψk(i+ 1) = hk(i) + µk
[
εI + R̂z,k(i)

]−1
zk(i)ek(i), (24a)

hk(i+ 1) =
∑
`∈Nk

a`kψ`(i+ 1), (24b)

with ε ≥ 0 a small regularization parameter. Compared with the
diffusion LMS algorithm (18), the LMS-Newton method (24)
requires the computation of

[
εI + R̂z,k(i)

]−1
. This algorithm

can produce better performance as shown in the sequel, but at
the expense of additional computation.

In order to reduce the computational complexity of the
LMS-Newton algorithm, we propose to use a preconditioning
matrix P k that is independent of the graph signal x(i) in
the adaptation step, instead of the Hessian matrix Rz,k or its
estimate R̂z,k. Since the large eigenvalue spread of the input
covariance matrix Rz,k results mainly from the shift matrix S
and the filter order M , we construct the M×M preconditioning
matrix P k from the local knowledge of S and M as follows:

P k , diag{‖[S(m−1)]k,•‖2}Mm=1. (25)

The rationale behind (25) is that, in the case where x(i) is
i.i.d. with variance σ2, it follows from (15) that Rz,k = σ2P k.
The main advantages of P k over Rz,k are that it is a diagonal
matrix, independent of x(i), and it can be evaluated beforehand
at each node k during an initial step by using the information
from its M -hop neighbors. Following the same line of reason-
ing as for the LMS-Newton method, we arrive at the following
preconditioned graph diffusion LMS strategy:

ψk(i+ 1) = hk(i) + µkDkzk(i)ek(i), (26a)

hk(i+ 1) =
∑
`∈Nk

a`kψ`(i+ 1). (26b)

with
Dk = (εI + P k)

−1, (27)

where the regularization term εI has also been added to P k.
At each iteration i, node k uses the local information to update
the intermediate estimate ψk(i+1) in the adaptation step (26a).
Then, in the combination step (26b), the intermediate esti-
mates ψ`(i+1) from the neighborhood of node k are combined
to get hk(i + 1). Although the preconditioning matrix here is
not the true Hessian matrix, we prove in Section IV that the
algorithm converges to the optimal solution ho provided that
it is stable.

IV. STOCHASTIC BEHAVIOR ANALYSIS

We analyze the transient and steady-state performance of
the diffusion preconditioned LMS (PLMS) algorithm (26). We
denote by h̃(i) , col{ho−hk(i)}Nk=1 the network error vector.
For tractability, we introduce the following assumption.

Assumption 1. The regressors zk(i) arise from a zero-mean
random process that is temporally white.

Although the independence assumption does not hold here, it
turns out that the resulting expressions match well the simula-
tion results for sufficiently small step-sizes. This independence
assumption is commonly used in adaptive filtering literature
[17], [19] since it helps to simplify the derivations without
constraining the conclusions.

A. Mean-error behavior analysis
Using the data model (13), the network error vector h̃(i)

corresponding to algorithm (26) evolves according to [19]:

h̃(i+ 1) = B(i)h̃(i)−A>MDpzv(i) (28)

where B(i) , A>(IMN −MDRz(i)), A , A ⊗ IM ,
M , diag{µkIM}Nk=1, D = diag{Dk}Nk=1, Rz(i) ,
diag{zk(i)z>k (i)}Nk=1, and pzv(i) , col{zk(i)vk(i)}Nk=1.

Taking expectations of both sides of (28), using the fact that
E{pzv(i)} = 0, and applying the independence Assumption 1,
we obtain:

Eh̃(i+ 1) = BEh̃(i), (29)

where B , A>(IMN −MDRz) and Rz , diag{Rz,k}Nk=1.
From (29), we observe that algorithm (26) converges asymp-
totically in the mean toward the optimal vector ho if, and only
if, B is stable, namely, all its eigenvalues lie strictly inside the
unit disc. It turns out that, when the signal x(i) is i.i.d, the
stability of B is ensured by choosing µk according to:

0 < µk <
2

λmax(DkRz,k)
, k = 1, . . . , N. (30)

B. Mean-square-error behavior analysis
We now study the mean-square-error behavior of algo-

rithm (26). From the independence Assumption 1, it can be
verified that the weighted mean-square-error E‖h̃(i)‖2Σ satisfies
the following relation:

E‖h̃(i+ 1)‖2Σ = E‖h̃(i)‖2Σ′ + E‖A>MDpzv(i)‖2Σ (31)

where Σ is a positive semi-definite matrix that we are free to
choose, and Σ′ , E{B>(i)ΣB(i)}.

The second term on the RHS of (31) can be written as:

E‖A>MDpzv(i)‖2Σ = Tr(ΣG) (32)

where G , A>MDSDMA and S , E{pzv(i)p>zv(i)} =
diag{σ2

v,kRz,k}Nk=1. Let σ = vec(Σ) and σ′ = vec(Σ′). The
notation ‖h‖2σ is used to refer to the same quantity ‖h‖2Σ. It
can be verified that σ′ = Fσ, where F , E{B>(i)⊗B>(i)}.
For sufficiently small step-sizes, by neglecting the influence of
higher-order terms, F can be approximated by F ≈ B> ⊗
B>. Using the property Tr(ΣW) = [vec(W>)]>vec(Σ), the
variance relation (31) can be written as:

E‖h̃(i+ 1)‖2σ = E‖h̃(i)‖2Fσ + [vec(G>)]>σ. (33)

Observe from the above expression that the variance E‖h̃(i)‖2σ
converges if F is stable [19]. Under the approximation B> ⊗
B>, the stability of F is ensured by choosing µk according
to (30). Iterating (33) starting from i = 0, we obtain:

E‖h̃(i+1)‖2σ = E‖h̃(0)‖2Fi+1σ+[vec(G>)]>
i∑

j=0

F jσ. (34)

Comparing (34) at time i + 1 and i, we obtain the transient
learning recursion:

E‖h̃(i+ 1)‖2σ = E‖h̃(i)‖2σ + [vec(G>)]>F iσ

+ [vec(E{h̃(0)h̃
>
(0)})]>(F − I)F iσ. (35)

Consider the steady-state network mean-square-deviation
(MSD) defined as:

ζ = lim
i→∞

1

N
E{‖h̃(i)‖2}. (36)

If F is stable, we obtain from (33) as i→∞:

lim
i→∞

E‖h̃(i)‖2(I−F)σ = [vec(G>)]>σ. (37)

Replacing σ in (37) by 1
N (I − F)−1 vec(I), we obtain the

steady-state network MSD:

ζ =
1

N
[vec(G>)]>(I −F)−1 vec(I). (38)

This concludes the analysis of algorithm (26). Note that we
also studied algorithm (24) but, due to space limitations, we
are not able to include the theoretical findings. However, for
illustration purposes, the theoretical curves obtained from this
analysis are reported in all the plots of Section V.

V. SIMULATIONS

We applied the diffusion LMS algorithm (18), the diffusion
LMS-Newton (LMSN) algorithm (24), and the diffusion pre-
conditioned LMS (PLMS) algorithm (26) to estimate graph
filter coefficients using different types of shift operators S.
An undirected weighted sensor network of N = 20 nodes
was generated using GSPBOX [20]. Each node was connected
to its 5 nearest neighbors. We assumed that the graph signal
process x(i) is i.i.d. zero-mean Gaussian with covariance
matrix Rx = diag{σ2

x,k}Nk=1 where the variances σ2
x,k were

randomly generated from the uniform distribution U(1, 1.5).
The noise v(i) was zero-mean Gaussian with covariance matrix
Rv = diag{σ2

v,k}Nk=1. The variances σ2
v,k were randomly

generated from the uniform distribution U(0.1, 0.15). The graph
filter coefficients hom were randomly generated from the uni-
form distribution U(0, 1). We assumed the linear data model
(3). All simulated results were averaged over 200 Monte-Carlo
runs.

In the first experiment, we adopted the normalized adjacency
matrix as shift operator [3], [21], i.e., S = Aw

1.5λmax(Aw) , where
Aw is the weighted adjacency matrix. In this case, all the
eigenvalues of S are smaller than 1. Thus, the energy of the
shifted signal Smx diminishes for large m. We set M = 3. In
this case, the smallest eigenvalue λmin(Rz,k) was very small,
and, for some node, it was close to 0. For the LMSN and PLMS
algorithms, a large regularization strength ε results in a slow
convergence rate and a small MSD, while a small ε results in
a larger MSD but a fast convergence rate. We set ε = 0.01 in
this experiment for both algorithms. We ran algorithms (18),
(24), and (26) by setting a`,k = 1

|Nk| for ` ∈ Nk. We used
uniform step-size for all nodes, i.e., µk = µ for all k, and
we set µ = 0.13 for the LMS, µ = 0.0115 for the LMSN,
and µ = 0.01 for the PLMS. The network MSD performance
of each algorithm is reported in Fig. 1 (left). The theoretical
transient and steady-state MSD are also reported. Observe that
the diffusion LMSN and PLMS algorithms converge faster than

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-30

-25

-20

-15

-10

-5

0

Simulated transient MSD

Theoretical transient MSD

Theoretical steady-state MSD

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-40

-35

-30

-25

-20

-15

-10

-5

0

5

Fig. 1: Network MSD performance for different types of shift operator. (Left) Normalized Adjacency Matrix. (Middle) Normalized
Laplacian Matrix. (Right) Adjacency Matrix.

the LMS algorithm. Also, note that the theoretical results match
well the simulated curves.

In the second experiment, we used the normalized graph
Laplacian matrix [2] defined as S =D−

1
2LD−

1
2 where D is

the degree matrix and L is the graph Laplacian matrix. The filter
order was set to M = 5. In this case, λmax(Rz,k) was large
for all nodes. Therefore, for the diffusion LMS algorithm, the
step-size was chosen relatively small to guarantee convergence.
We set µ = 0.004 for the LMS, µ = 0.01 for the LMSN, and
µ = 0.008 for the PLMS. Figure 1 (middle) shows that, for
the same steady-state MSD, LMSN and PLMS perform better
than LMS in terms of convergence rate.

In the last scenario, the adjacency matrix Aw was chosen as
a shift operator. We set M = 5. For the LMS update, the step-
size was chosen as µk = 0.05 · 2

λmax(Rz,k)
for node k. For the

LMSN and the PLMS, we used a uniform step-size µ = 0.018
and µ = 0.016, respectively. As shown in Fig. 1 (right), LMSN
and PLMS algorithms converge faster than the LMS solution.

VI. CONCLUSION

In this paper, diffusion LMS strategies were employed to
estimate graph filter coefficients in an adaptive and distributed
manner. Particularly, a diffusion LMS-Newton algorithm was
proposed to improve the convergence rate of existing diffusion
LMS based strategies that may suffer from large eigenvalue
spread of the input signals due to the use of non-energy pre-
serving graph shift operators. Furthermore, a computationally
efficient preconditioned LMS was devised and its stochastic
performance analysis was provided. Simulation results vali-
dated the theoretical models and showed the efficiency of the
proposed algorithms.

REFERENCES

[1] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst,
“Graph signal processing,” arXiv preprint arXiv:1712.00468, 2017.

[2] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE
Signal Processing Magazine, vol. 30, no. 3, pp. 83–98, 2013.

[3] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs,”
IEEE Transactions on Signal Processing, vol. 61, no. 7, pp. 1644–1656,
2013.

[4] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal
processing on graphs: Sampling theory,” IEEE Transactions on Signal
Processing, vol. 63, pp. 6510–6523, 2015.

[5] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for
bandlimited graph signals using graph spectral proxies,” IEEE Transac-
tions on Signal Processing, vol. 64, no. 14, pp. 3775–3789, 2016.

[6] P. Di Lorenzo, P. Banelli, and S. Barbarossa, “Optimal sampling strategies
for adaptive learning of graph signals,” in Proc. IEEE 25th European
Signal Processing Conference (EUSIPCO), 2017, pp. 1684–1688.

[7] B. Girault, “Stationary graph signals using an isometric graph translation,”
in Proc. IEEE 23rd European Signal Processing Conference (EUSIPCO),
2015, pp. 1516–1520.

[8] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph
processes and spectral estimation,” IEEE Transactions on Signal Process-
ing, vol. 65, no. 22, pp. 5911–5926, 2016.

[9] N. Perraudin and P. Vandergheynst, “Stationary signal processing on
graphs,” IEEE Transactions on Signal Processing, vol. 65, no. 13, pp.
3462–3477, 2017.

[10] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive moving
average graph filtering,” IEEE Transactions on Signal Processing, vol. 65,
no. 2, pp. 274–288, 2017.

[11] A. H. Sayed, S.-Y. Tu, J. Chen, X. Zhao, and Z. J. Towfic, “Diffusion
strategies for adaptation and learning over networks: an examination of
distributed strategies and network behavior,” IEEE Signal Processing
Magazine, vol. 30, no. 3, pp. 155–171, 2013.

[12] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE, vol. 102,
no. 4, pp. 460–497, 2014.

[13] F. Grassi, A. Loukas, N. Perraudin, and B. Ricaud, “A time-vertex signal
processing framework,” arXiv preprint arXiv:1705.02307, 2017.

[14] R. Nassif, C. Richard, J. Chen, and A. H. Sayed, “A graph diffusion
LMS strategy for adaptive graph signal processing,” in Proc. Asilomar
Conference on Signals, Systems, and Computers, 2017, pp. 1–4.

[15] ——, “Distributed diffusion adaptation over graph signals,” in Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 1–5.

[16] A. H. Sayed, “Adaptation, learning, and optimization over networks,”
Foundations and Trends in Machine Learning, vol. 7, no. 4-5, pp. 311–
801, 2014.

[17] ——, Adaptive Filters. John Wiley & Sons, 2008.
[18] A. Gavili and X.-P. Zhang, “On the shift operator, graph frequency, and

optimal filtering in graph signal processing,” IEEE Transactions on Signal
Processing, vol. 65, no. 23, pp. 6303–6318, 2017.

[19] A. H. Sayed, “Diffusion adaptation over networks,” in Academic Press
Library in Signal Processing, S. Theodoridis and R. Chellappa, Eds.
Academic Press, Elsevier, 2013, vol. 3, pp. 322–454.

[20] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Van-
dergheynst, and D. K. Hammond, “Gspbox: A toolbox for signal pro-
cessing on graphs,” arXiv preprint arXiv:1408.5781, 2014.

[21] J. Mei and J. M. Moura, “Signal processing on graphs: Causal modeling
of unstructured data,” IEEE Transactions on Signal Processing, vol. 65,
no. 8, pp. 2077–2092, 2017.

