
CONVERGENCE OF VARIANCE-REDUCED LEARNING UNDER RANDOM RESHUFFLING

Bicheng Ying? Kun Yuan? Ali H. Sayed†

?Department of Electrical and Computer Engineering, University of California, Los Angeles
†School of Engineering, Ecole Polytechnique Federale de Lausanne, Switzerland

ABSTRACT

Several useful variance-reduced stochastic gradient algorithms, such
as SVRG, SAGA, Finito, and SAG, have been proposed to mini-
mize empirical risks with linear convergence properties to the exact
minimizers. The existing convergence results assume uniform data
sampling with replacement. However, it has been observed that ran-
dom reshuffling can deliver superior performance and, yet, no formal
proofs or guarantees of exact convergence exist for variance-reduced
algorithms under random reshuffling. This paper makes two contri-
butions. First, it resolves this open issue and provides the first the-
oretical guarantee of linear convergence under random reshuffling
for SAGA; the argument is also adaptable to other variance-reduced
algorithms. Second, under random reshuffling, the paper proposes
a new amortized variance-reduced gradient (AVRG) algorithm with
constant storage requirements compared to SAGA and with balanced
gradient computations compared to SVRG. AVRG is also shown an-
alytically to converge linearly.

Index Terms— Random reshuffling, variance-reduction, stochas-
tic gradient descent, linear convergence.

1. INTRODUCTION AND MOTIVATION

In recent years, several variance-reduced stochastic gradient algo-
rithms have been proposed, including SVRG [1], SAGA [2], Finito
[3], and SAG [4], with the intent of reaching the exact minimizer
of an empirical risk. Under constant step-sizes and strong-convexity
assumptions on the loss functions, these methods have been shown
to attain linear convergence towards the exact minimizer when the
data are uniformly sampled with replacement.

However, it has been observed that implementations that rely in-
stead on random reshuffling (RR) of the data (i.e., sampling without
replacement) achieve better performance than implementations that
rely on uniform sampling with replacement [5–7]. Under random
reshuffling, the algorithm is run multiple times over the finite data
set where each run is indexed by the integer k ≥ 1 and is referred to
as an epoch. For each epoch k, the original data is reshuffled so that
the sample of index i becomes the sample of index σk(i), where the
symbol σ represents a uniform random permutation of the indices.

It was shown in [7] that random reshuffling under decaying
step-sizes can accelerate the convergence rate of stochastic-gradient
learning from O(1/i) to O(1/i2) [8, 9], where i is the iteration in-
dex. It is also possible to show [10] that in random reshuffling under
small constant step-sizes, µ, can boost the steady-state performance
of these algorithms from O(µ)-suboptimal to O(µ2)-suboptimal

This work was supported in part by NSF grant CCF-1524250. Emails:
{ybc, kunyuan}@ucla.edu, and ali.sayed@epfl.ch

around a small neighborhood of the exact minimizer [11]. A sim-
ilar improvement in convergence rate and performance has been
observed for the variance-reduced Finito algorithm [3]. However,
no formal proofs or guarantees of exact convergence exist for the
class of variance-reduced algorithms under random reshuffling, i.e.,
it is still not known whether these types of algorithms are always
guaranteed to converge when RR is employed and under what con-
ditions on the data. In [12], another variance-reduction algorithm
is proposed under reshuffling; however, no proof of convergence is
provided. The closest attempts at proof are the useful arguments
given in [13, 14]. The work [13] deals with the case of incremental
aggregated gradients, which corresponds to a deterministic version
of RR for SAG, while the work [14] deals with SVRG in the context
of ridge regression problems using regret analysis.

This paper makes two contributions. First, it resolves this open
convergence issue and provides the first theoretical proof and guar-
antee of linear convergence to the exact minimizer under random
reshuffling for SAGA. While the argument is easily adaptable to a
wider class of variance-reduced implementations, we illustrate the
technique in this work for the SAGA algorithm due to space lim-
itations. A second contribution is that, under random reshuffling,
we will propose a new amortized variance-reduced gradient (AVRG)
algorithm with two clear benefits: it has constant storage require-
ments in comparison to SAGA, and it has balanced gradient com-
putations in comparison to SVRG. The balancing in computations is
attained by amortizing the full gradient calculation across all itera-
tions. AVRG is also shown analytically to converge linearly.

In preparation for the analysis, we review briefly some of the
conditions and notation that are relevant. We consider a generic em-
pirical risk function J(w) : RM → R, which is defined as a sample
average of loss values over a possibly large but finite training set of
size N :

w?
∆
= argmin

w∈RM

J(w)
∆
=

1

N

N∑
n=1

Q(w;xn), (1)

where the {xn}Nn=1 represent training data samples.

Assumption 1 (LOSS FUNCTION) The loss function Q(w;xn) is
convex, differentiable, and has a δ-Lipschitz continuous gradient,
i.e., for every n = 1, . . . , N and any w1, w2 ∈ RM :

‖∇wQ(w1;xn)−∇wQ(w2;xn)‖ ≤ δ‖w1 − w2‖ (2)

where δ > 0. We also assume that the empirical risk J(w) is ν-
strongly convex, namely,(
∇wJ(w1)−∇wJ(w2)

)T
(w1 − w2) ≥ ν‖w1 − w2‖2 (3)

�



2. SAGA WITH RANDOM RESHUFFLING

We consider the SAGA algorithm [2] in this work, while noting that
the convergence analysis can be easily extended to other versions of
variance-reduced algorithms; in particular, we shall illustrate how
it applies to the new variant AVRG. We list the SAGA algorithm
without the proximal step in the table below, and incorporate ran-
dom reshuffling into the description of the algorithm. In the listing,
random quantities are denoted in boldface notation.

SAGA with Random Reshuffling [2]

Initialization: w0
0 = 0,∇Q(φ0

0,n;xn) = 0, n = 1, 2, . . . , N.
Repeat k = 0, 1, 2 . . . ,K (epoch):

generate a random permutation function σk(·).
Repeat i = 0, 1, . . . N − 1 (iteration):

j =σk(i+ 1) (4)
wk
i+1 =wk

i − µ
[
∇Q(wk

i ;xj)−∇Q(φki,j ;xj)

+
1

N

N∑
n=1

∇Q(φki,n;xn)
]

(5)

φki+1,j =w
k
i+1, and φki+1,n = φki,n, for n 6= j (6)

End
wk+1

0 =wk
N , φ

k+1
0 = φkN (7)

End

It is seen from the above listing that, for each run k, the original
data {xn}Nn=1 is randomly reshuffled so that the sample of index
i+ 1 becomes the sample of index j = σk(i+ 1). To facilitate the
understanding of the algorithm, we associate a block matrix Φk with
each run. This matrix is only introduced for visualization purposes.
We denote the block rows of Φk by {φki }; one for each iteration i,
as illustrated in Fig. 1. Each block row φki has size M × N . We
can therefore view Φk as consisting of cells {φki,n}, each having the
same M × 1 size as the minimizer w?. At every iteration i, one
random cell in the (i + 1)−th block row is populated by the iterate
wk
i+1; the column location of this random cell is determined by the

value of j.

0 blue block

1 blue block

2 blue blocks

N blue blocks

Iterations

Fig. 1: An illustration of the evolution of {φki,n}.

2.1. Properties of the History Variables
Several useful observations can be drawn from Fig. 1.
Observation 1: At the start of each epoch k, the components
{φk0,n}Nn=1 correspond to a permutation of the weight iterates from
the previous run, {wk−1

i }Ni=1.
Observation 2: At the beginning of the i−th iteration of an epoch
k, all components of indices {σk(m)}im=1 will be set to weight
iterates obtained during the k−th run, namely, {wk

m}im=1, while the
remainingN−i history positions will have values from the previous
run, namely, {wk−1

tn
}N−in=1 for some values tn ∈ {1, 2, . . . , N}.

Observation 3: At the beginning of the i−th iteration of an epoch
k, it holds that

φki,j = φ
k
0,j , where j ∈ σk(i+ 1:N) (8)

where σk(i + 1:N) represents the selected indices for future itera-
tions i+ 1 to N . The following result is now possible.

Lemma 1 (SECOND-ORDER MOMENT OF HISTORY VARIABLE)
The second-order moment of each φki,n satisfies:

E

[
N∑
n=1

‖φki,n‖
2

]
=

i∑
n′=1

E ‖wk
n′‖2 +

N − i
N

N∑
n=1

E ‖wk−1
n ‖2 (9)

�
For comparison purposes, this result and the previous properties do
not hold for implementations that involve sampling the data with
replacement. For example, property (9) would be replaced by [2]:

E

[
N∑
n=1

‖φki,n‖
2

]
= E ‖wk

i ‖2 +
N − 1

N

N∑
n=1

E ‖φki−1,n‖
2, ∀i, k

(10)

This expression is similar to (9) only for i = 1. However, observe
that (10) involves variables {φki−1,n} on the right-hand side, instead
of the variables {wk−1

n } that appear in (9). This is because random
reshuffling updates every history variable during each run, while uni-
form sampling may leave some variables φki−1,n untouched. This
fact helps explain why SAGA with RR tends to have faster conver-
gence rate, as we will illustrate in a later experiment.

2.2. Biased Nature of the Gradient Estimator
Before we examine convergence properties, it is useful to highlight
that it is not necessary to insist on unbiased gradient estimators for
proper operation of stochastic-gradient algorithms. To see this, let
us examine first the SAGA implementation assuming uniform data
sampling with replacement. In a manner similar to (5), the SAGA
algorithm in this case will employ the following modified gradient
direction:
ĝu(w

k
i )

∆
= ∇Q(wk

i ;xu)−∇Q(φki,u;xu) +
1

N

N∑
n=1

∇Q(φki,n;xn)

where the subscript u is used to denote a uniformly distributed ran-
dom variable, u ∼ U [1, N ]. As a result, this modified gradient is
unbiased, i.e., Eu[ĝu(wk

i )|Fk
i ] = ∇J(wk

i ), where Fk
i denotes the

collection of all available information before iteration i at epoch k.
However, this property will not hold under random reshuffling! This
is because data is now sampled without replacement and the selec-
tion of one index becomes dependent on the selections made prior to
it. Specifically, it will instead hold that

E j
[
ĝj(w

k
i )|Fk

i

]
=

1

N − i
∑

n/∈σk(1:i)

(
∇Q(wk

i ;xn)−∇Q(φki,n;xn)
)

+
1

N

N∑
n=1

∇Q(φki,n;xn) (11)

where j=σk(i+1). It is not hard to see that the expression on the
right-hand side is generally different from ∇J(wk

i ). Consequently,
the gradient estimate that is employed by SAGA under RR is a bi-
ased estimator for the true gradient. Nevertheless, we will estab-
lish two useful facts in the following sections. First, this gradient
estimate becomes asymptotically unbiased when the algorithm con-
verges, as k → ∞. Second, the biased gradient estimation does not
harm the convergence rate because we will observe later that SAGA
under RR actually converges faster than SAGA in the simulations.



2.3. Convergence Analysis
The following result can now be established, the proof of which is
omitted due to space limitations (see [15] for the derivations). Let
w̃k

0
∆
= w? −wk

0 and introduce the energy function:

Vk+1
∆
= E ‖w̃k+1

0 ‖2+ (12)

11

16
γ

(
1

N

N−1∑
i=1

E ‖wk+1
i −wk+1

0 ‖2 +
1

N

N−1∑
i=1

E ‖wk
N −wk

i ‖2
)

where γ = 9µδN .

Theorem 1 (LINEAR CONVERGENCE OF SAGA) For sufficiently
small step-sizes, namely, for µ ≤ ν

11δ2N
, the quantity Vk+1 con-

verges linearly, i.e.

Vk+1 ≤ αVk (13)
where

α=
1− µνN/4

1− 27δ4µ3N3/ν
< 1 (14)

It follows that E ‖w̃k
0‖2 ≤αkV0. �

It is worth noting from this result that to achieve an ε-optimal solu-
tion, the number of iterations required is close toO(δ2/ν2) log(1/ε),
which is slower than the theorem proved in [2]. The main reason
is that the dependency between the samples makes it difficult to
obtain a tight bound. As we will observe in the simulations later, in
practice, the convergence can be faster than the original SAGA.

3. AMORTIZED VARIANCE-REDUCED GRADIENT
(AVRG) LEARNING

One inconvenience of the SAGA implementation is its high stor-
age requirement, which refers to the need to track history variables
{φki,n} or gradients for use in (5). There is a need to store O(N)
variables. In big data applications, the size of N can be prohibitive.
An alternative method is the stochastic variance-reduced gradient
(SVRG) algorithm [1]. This method replaces the history variables
{φki,j} of SAGA by a fixed initial condition wk

0 for each epoch.
This simplification greatly reduces the storage requirement. How-
ever, each epoch in SVRG is preceded by an aggregation step to
compute a gradient estimate, which is time-consuming for large data
sets. It also causes the operation of SVRG to become unbalanced,
with a larger time interval needed before each epoch, and shorter
time intervals needed within the epoch. Motivated by these two im-
portant considerations, we propose a new amortized implementation,
referred to as AVRG. This new algorithm removes the initial aggre-
gation step from SVRG and replaces it by an estimate gk+1. This
estimate is computed iteratively within the inner loop by re-using
the gradient, ∇Q(wk

i ;xj), to reduce complexity. Notice that gk+1

is actually calculated in epoch k in order to avoid delaying the com-
putation.

3.1. Useful Properties
Several properties stand out when we compare the proposed AVRG
implementation with the previous algorithms. First, observe that the
storage requirement for AVRG in each epoch is just the variables
gk, gk+1, and wk

0 , which is similar to SVRG and considerably less
than SAGA. A variance-reduced algorithm based on reshuffling is
proposed in [12]; however, it still requires extra storage as SAGA.

Second, since the gradient vector Q(wk
i ;xj) used in (17) has

already been computed in (16), every iteration i will only require

AVRG with Random Reshuffling

Initialization: w0
0 = 0, g0 = 0, ∇Q(w0

0;xn) ← 0, n =
1, 2, . . . , N
Repeat k = 0, 1, 2 . . . ,K (epoch):

generate a random permutation function σk(·),
set gk+1 = 0
Repeat i = 0, 1, . . . N − 1 (iteration):

j =σk(i+ 1) (15)

wk
i+1 =wk

i − µ
[
∇Q(wk

i ;xj)−∇Q(wk
0 ;xj) + g

k
]
(16)

gk+1 ← gk+1 +
1

N
∇Q(wk

i ;xj) (17)

End
wk+1

0 =wk
N (18)

End

two gradients to be evaluated. Thus, the effective computation of
gradients per epoch is smaller in AVRG than in SVRG.

Third, observe from Eq. (17) how the estimated gk+1 is com-
puted by averaging the loss values at successive iterates. This con-
struction is feasible because of the use of random reshuffling. Under
random reshuffling, the collection of gradients {Q(wk

i ;xj)} that are
used in (17) during each epoch will end up covering the entire set of
data, {xn}Nn=1. This is not necessarily the case for operation under
uniform sampling with replacement. Therefore, the AVRG proce-
dure assumes the use of random reshuffling. We will simply refer to
it as AVRG, rather than AVRG under RR.

Fourth, unlike the SVRG algorithm, which requires a step to
compute the full gradient, the AVRG implementation is amenable
to decentralized implementations (i.e., to fully-decentralized imple-
mentations with no master nodes), and also to asynchronous opera-
tion [16]. The unbalanced gradient computation in SVRG poses dif-
ficulties for decentralized solutions and introduces idle times when
multiple devices/agents with different amounts of data cooperate to
solve an optimization problem. We will address these challenges in
another work [17].

Finally, the modified gradient direction that is employed in (16)
by AVRG has distinctive properties in relation to the modified gra-
dient direction (5) in SAGA. To see this, we note that the gradient
direction in (16) can be written as

ĝj(w
k
i )

∆
= ∇Q(wk

i ;xj)−∇Q(wk
0 ;xj)+

1

N

N−1∑
n=0

∇Q(wk−1
n ;xσk−1(n+1)) (19)

It is clear that even when the index j is chosen uniformly, the above
vector cannot be an unbiased estimator for the true gradient in gen-
eral. What is more critical for convergence is that the modified gra-
dient direction of an algorithm should satisfy the useful property
that, as the weight iterate gets closer to the optimal value, i.e., as
‖w? −wk

i ‖ ≤ ε for arbitrary small ε and large enough k, the mod-
ified and true gradients will also get arbitrarily close to each. This
property holds for (19) since

‖ĝj(wk
i )−∇J(w?)‖

≤ δ‖wk
i − w?‖+ δ‖wk

0 − w?‖+
δ

N

N−1∑
n=1

∥∥∥wk−1
n−1 − w

?
∥∥∥

≤ 3δε (20)



0 2 4 6 8 10 12 14
Epochs

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

‖w
k 0
−
w

‖2
/‖
w

‖2
Covtype

0 5 10 15 20 25 30 35
#Gradients / N

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

J
(w

k 0
)
−
J
(w

)

0 2 4 6 8 10 12 14
Epochs

10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100 MNIST

0 5 10 15 20 25 30 35
#Gradients / N

10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

0 2 4 6 8 10 12 14
Epochs

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100 RCV1

0 5 10 15 20 25 30 35
#Gradients / N

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

0 2 4 6 8 10 12 14
Epochs

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100 CIFAR-10

0 5 10 15 20 25 30 35
#Gradients / N

10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

AVRG

SVRG

SAGA

SAGA+RR

Fig. 2: Comparison of various variance-reduced algorithms over four datasets: Covtype, MNIST, RCV1, and CIFAR-10. The top four plots
compare the relative mean-square-error performance versus the epoch index, k, while the bottom four plots compare the excess risk values
versus the number of gradients computed.

Table 1: Comparison of the variance-reduced implementations.
SVRG AVRG SAGA SAGA+RR

grad. comp. per epoch 2.5N 2N N N
extra storage req. O(1) O(1) O(N) O(N)
balanced grad. comp. No Yes Yes Yes
unbiased grad. est. Yes No Yes No

where in the second inequality we exploited Jensen’s inequality, the
triangle inequality, Lipschitz assumption, and the fact that σk−1(n)
corresponds to sampling without replacement. Because ε can be cho-
sen arbitrary small, then ĝj(wk

i ) must approach the true gradient at
w?. This result also implies the aforementioned asymptotic unbi-
asedness property of the gradient estimate. For ease of reference,
Table 1 compares the trade-offs between storage and computational
complexity of different variance-reduced algorithms. The same ap-
proach used to establish the convergence of SAGA under RR is also
suitable for AVRG.

Theorem 2 (LINEAR CONVERGENCE OF AVRG) For the step-
sizes satisfying µ≤ ν

9δ2N
, the quantity Vk+1 converges linearly:
Vk+1 ≤ αVk (21)

where

α =
1− µνN/4

1− 18δ3µ3N3/ν
< 1 (22)

and
Vk+1

∆
= E ‖w̃k+1

0 ‖2+ (23)

13

16
γ

(
1

N

N−1∑
i=1

E ‖wk+1
i −wk+1

0 ‖2 +
1

N

N−1∑
i=1

E ‖wk
N −wk

i ‖2
)

�

This is similar to the theorem for SAGA under RR. However, in
practice, AVRG will perform differently from SAGA under RR.

4. SIMULATION RESULTS

In this section, we illustrate the convergence performance of vari-
ous algorithms by numerical simulations. We consider the following
regularized logistic regression problem:

min
w

J(w) =
1

N

N∑
n=1

Q(w;hn, γ(n)) (24)

∆
=

1

N

N∑
n=1

(ρ
2
‖w‖2 + ln

(
1 + exp(−γ(n)hT

nw)
))

where hn ∈RM is the feature vector, γ(n)∈{±1} is the class label.
In all our experiments, we set ρ=1/N . The optimal w? and the cor-
responding risk value are calculated by means of the Scikit-Learn
package. We run simulations over four datasets: covtype.binary1,
rcv1.binary1, MNIST2, and CIFAR-103. The last two datasets have
been transformed into binary classification problems by consider-
ing data with labels 0 and 1, i.e., digital zero and one classes for
MNIST and airplane and automobile classes for CIFAR-10. All fea-
tures have been preprocessed and normalized to the unit vector [18].
The results are exhibited in Fig. 2. To enable fair comparisons,
we tune the step-size parameter of each algorithm for fastest con-
vergence in each case. The plots are based on measuring the relative
mean-square-error, E ‖wk

0−w?‖2/‖w?‖2, and the excess risk value,
EJ(wk

0)−J(w?). Two key facts to observe from these simulations
are that 1) SAGA with RR is consistently faster than SAGA, and 2)
without the high memory cost of SAGA and without the unbalanced
structure of SVRG, the proposed AVRG technique is able to match
their performance reasonably well.

1http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
2http://yann.lecun.com/exdb/mnist/
3http://www.cs.toronto.edu/˜kriz/cifar.html

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://yann.lecun.com/exdb/mnist/
http://www.cs.toronto.edu/~kriz/cifar.html


5. REFERENCES

[1] R. Johnson and T. Zhang, “Accelerating stochastic gradient de-
scent using predictive variance reduction,” in Proc. Advances
in Neural Information Processing Systems (NIPS), Lake Tahoe,
Navada, 2013, pp. 315–323.

[2] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast in-
cremental gradient method with support for non-strongly con-
vex composite objectives,” in Proc. Advances in Neural Infor-
mation Processing Systems (NIPS), Montreal, Canada, 2014,
pp. 1646–1654.

[3] A. Defazio, J. Domke, and T. S. Caetano, “Finito: A faster,
permutable incremental gradient method for big data prob-
lems.,” in Proc. International Conference of Machine Learning
(ICML), Beijing, China, 2014, pp. 1125–1133.

[4] N. L. Roux, M. Schmidt, and F. R. Bach, “A stochastic gradient
method with an exponential convergence rate for finite training
sets,” in Proc. Advances in Neural Information Processing Sys-
tems (NIPS), Lake Tahoe, Navada, 2012, pp. 2663–2671.

[5] L. Bottou, “Curiously fast convergence of some stochastic gra-
dient descent algorithms,” in Proc. Symposium on Learning
and Data Science, Paris, 2009, pp. 1–5.

[6] B. Recht and C. Ré, “Toward a noncommutative arithmetic-
geometric mean inequality: Conjectures, case-studies, and
consequences,” in Proc. Conference on Learning Theory
(COLT), Edinburgh, Scotland, 2012, pp. 1–11.

[7] M. Gürbüzbalaban, A. Ozdaglar, and P. Parrilo, “Why
random reshuffling beats stochastic gradient descent,”
arXiv:1510.08560, Oct. 2015.

[8] Y. Nesterov, Introductory Lectures on Convex Optimization: A
basic course, vol. 87, Springer, 2013.

[9] B. T. Polyak, Introduction to Optimization, Optimization Soft-
ware, NY, 1987.

[10] B. Ying, B. Yuan, S. Vlaski, and A. H. Sayed, “Stochastic
learning under random reshuffling,” submitted for publication,
2018.

[11] A. H. Sayed, “Adaptation, learning, and optimization over net-
works,” Foundations and Trends in Machine Learning, vol. 7,
no. 4–5, pp. 311–801, 2014.

[12] S. De and T. Goldstein, “Efficient distributed SGD with vari-
ance reduction,” in Proc. IEEE International Conference on
Data Mining (ICDM), Barcelona, Spain, 2016, pp. 111–120.

[13] M. Gürbüzbalaban, A. Ozdaglar, and P. Parrilo, “On the con-
vergence rate of incremental aggregated gradient algorithms,”
SIAM Journal on Optimization, vol. 27, pp. 1035–1048, Jun.
2017.

[14] O. Shamir, “Without-replacement sampling for stochastic gra-
dient methods: Convergence results and application to dis-
tributed optimization,” arXiv:1603.00570, Mar. 2016.

[15] B. Ying, K. Yuan, and A. H. Sayed, “Convergence of variance-
reduced stochastic learning under random reshuffling,” avail-
able on arXiv:1708.01383, August 2017.

[16] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. J. Smola, “On
variance reduction in stochastic gradient descent and its asyn-
chronous variants,” in Advances in Neural Information Pro-
cessing (NIPS), pp. 2647–2655. Montréal, Canada, 2015.

[17] K. Yuan, B. Ying, and A. H. Sayed, “Variance-reduced
stochastic learning by networked agents under random reshuf-
fling,” available on arXiv:1708.01384, August 2017.

[18] L. Xiao and T. Zhang, “A proximal stochastic gradient method
with progressive variance reduction,” SIAM Journal on Opti-
mization, vol. 24, no. 4, pp. 2057–2075, 2014.

ybc
註解
Strange. I still cannot find the journey version.

ybc
註解
Sorry, professor, the format is generate auto. I don't know how to change it into comma.


	 Introduction and Motivation
	 SAGA with random reshuffling 
	 Properties of the History Variables
	 Biased Nature of the Gradient Estimator
	 Convergence Analysis

	 Amortized Variance-Reduced Gradient (AVRG) Learning
	 Useful Properties

	 Simulation Results
	 References

