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Abstract—We consider an adaptive network made of intercon-
nected agents engaged in a binary decision task. It is assumed
that the agents cannot deliver full-precision messages to their
neighbors, but only binary messages. For this scenario, a modified
version of the ATC diffusion rule for the agent state evolution
is proposed with improved decision performance under adaptive
learning scenarios. An approximate analytical characterization
of the agents’ state is derived, giving insight into the network
behavior at steady-state and enabling numerical computation of
the decision performance. Computer experiments show that the
analytical characterization is accurate for a wide range of the
parameters of interest.

I. INTRODUCTION

Inferential sensor networks designed to operate in nonsta-
tionary environments have received considerable attention in
recent years, due to their wide range of applications [1], [2].
It has been recognized that diffusion protocols with constant
step-size ensure good properties of continuous adaptation
and learning over such distributed networks, enabling the
system to continuously track drifts in the underlying state of
nature [3]–[5]. One operative modality of the diffusion scheme
is the adapt-then-combine (ATC) rule, in which each agent
of the network first updates (adapts) its status exploiting the
new data available at the current time, and then makes the
status available to the neighbor agents for exploiting the node
diversity (combination) [2]. The combination stage requires
the exchange of messages among the agents and the common
assumption is that these messages are delivered with full
precision. In some practical cases, however, the delivering of
full-precision messages is not possible because the connection
links have limited capabilities.

With this motivation, we propose a modified version of
the ATC rule, tailored to the assumption that the inter-agent
messages can be only binary. In the binary decision problem
that we address, these one-bit messages are the agent decisions
based on the most recent observations, which are not biased by
the past states of nature, so that the network tracks efficiently
the possible modifications of the operational conditions. The
modified scheme of the agents’ state evolution poses new
challenges arising from the interplay between the binary infor-
mation coming from the neighbors, and the continuous nature

The work of A. H. Sayed was supported in part by NSF grant CCF-
1524250.

of the agent state. This leads to a nontrivial distribution for
the agent state in the long run, for which no exact closed-form
analytical characterization is available. However, we provide
reasonably simple analytical approximations, from which the
decision performance can be easily obtained numerically.

The network design is addressed in the next section, and
the system analysis is conducted in Sec. III. One example of
application is given in Sec. IV, followed by final remarks in
Sec. V. An extended version of this work can be found in [6].

II. ADAPTIVE NETWORK DESIGN

We consider a connected network made of S agents (or
nodes) labeled by k = 1, . . . , S. The symbol Nk denotes the
set of nodes connected to agent k, including k itself, which
are referred to as the neighbors of agent k. The network is
engaged in a binary decision problem among two states of
nature, H0 and H1. The state of nature can vary over time,
and the network must track these changes.

Agent k at (discrete) time n ≥ 1 collects the random
scalar measurement rk(n) and computes the log-likelihood
ratio xk(n) , log

fr,1(rk(n))
fr,0(rk(n)) , where fr,h(rk(n)) denotes the

probability density function (PDF) of rk(n) under hypothesis
Hh, h = 0, 1. Measurements are assumed to be absolutely
continuous random variables admitting a density, and the log-
likelihood is assumed to exist. Let yk(n) be the state variable
at node k and time n. We consider the adaptive system
described by the following equations:

vk(n) = (1− µ)yk(n− 1) + µxk(n), (1a)

yk(n) = akvk(n) +

N∑
`=1
` 6=k

ak` x̃`(n), n ≥ 1, (1b)

in which x̃`(n) is a one-bit quantization of x`(n), namely,

x̃`(n) , I(x`(n) ≥ γloc)E1x + I(x`(n) < γloc)E0x, (2)

where γloc is a local quantization threshold, I denotes the
indicator function, and Eh is the expectation operator under
hypothesis Hh. The quantized variable x̃`(n) can be regarded
as the local decision made by agent ` at time n, exploiting
only the current observation r`(n). If γloc = 0, this decision
obeys the maximum-likelihood optimality criterion [7].



The parameter µ appearing in (1a) — known as the “step-
size” in the adaptive network literature — scales the fresh
measurements relative to the accumulated state of the agent.
Typically, µ � 1, and µ = 0.1 is a common figure in our
experiments. The combination coefficients {ak`} appearing
in (1b) are nonnegative scalars that satisfy

∑N
`=1 ak` = 1,

for all k = 1 . . . , S. Clearly, ak` = 0 if agents k and ` are
not neighbors. The self-combination coefficient akk > 0 is
denoted by ak for simplicity. When there is no danger of
confusion, we also denote rk(n) and xk(n) simply by r and x,
respectively.

Note in (2) that, by definition, E1x is the KL divergence [8]
from fr,1(r) to fr,0(r), while E0x is the negative of the KL
divergence from fr,0(r) to fr,1(r). Divergences are nonnega-
tive and we assume that they are strictly positive and finite.

From (1b), note also that when the state of nature changes,
node ` informs its neighbors about this modification by deliv-
ering to them the local decision x̃`(n), which is not affected
by the previous measurements. An alternative scheme in which
the combination rule (1b) is replaced by yk(n) = akvk(n) +∑
` 6=k ak`ṽ`(n), where ṽ`(n) is a quantized version of v`(n),

would respond more slowly to drifts in the underlying state of
nature, as discussed in [6]. Thus, the rationale behind (1a)-(1b)
is to enhance the adaptive capabilities of the network.

The forthcoming analysis is focused on the decision per-
formance of the network at steady-state (n → ∞). Namely,
we assume an infinitely long period of stationarity for the
underlying state of nature, and consider the single-threshold
decision rule of agent k: limn→∞ yk(n) ≥ γ ⇒ decide
H1, limn→∞ yk(n) < γ ⇒ decide H0, where γ is a given
decision threshold [not to be confused with the quantization
threshold γloc in (2)]. The goal is to compute the false-
alarm and detection probability of agent k, defined as Pf ,
P0(limn→∞ yk(n) ≥ γ) and Pd , P1(limn→∞ yk(n) ≥ γ),
where Ph is the probability operator under hypothesis Hh.

When the state of nature is constant, the observations
{rk(n)}, and consequently the log-likelihoods {xk(n)}, are
assumed i.i.d. (independent and identically distributed) across
all sensors k = 1, . . . , S, and time indices n ≥ 1.

III. SYSTEM ANALYSIS

A. Steady-State Distribution of the Agents

Iterating (1a)-(1b), simple algebraic manipulations yield an
explicit formula for yk(n), as follows:

yk(n) = ηnk yk(0)︸ ︷︷ ︸
transient

+µak

n∑
i=1

ηi−1
k xk(n− i+ 1)︸ ︷︷ ︸
,uk(n)

+

n∑
i=1

S∑
`=1

ηi−1
k ck` x̃`(n− i+ 1)︸ ︷︷ ︸

,zk(n)

, (3)

where ηk , (1 − µ)ak, and ck` = ak` for k 6= `, while
ckk = 0. Now since 0 < ηk < 1, the transient contribution

in (3) disappears in the long run, and the decision properties
of the system will depend on the limiting distribution of
the continuous component uk(∞) , limn→∞ uk(n) and the
discrete component zk(∞) , limn→∞ zk(n).

Consider first uk(∞), and let Fu,h(u), u ∈ <, be its cumu-
lative distribution function (CDF) under Hh. Let Φx,h(t) ,
logEhej tx, t ∈ <, be the log-characteristic functions of x
under hypothesis Hh, where j =

√
−1. We make the assump-

tions that x admits a density, that Φx,h(t) is known and that
it can be expanded in power series with radius of convergence
0 < τx,h ≤ ∞. Namely, for |t| < τx,h, we have the identity
Φx,h(t) =

∑∞
n=1 ϕn,h t

n.

Theorem 1: If τx,h =∞, the CDF Fu,h(u) of uk(∞) admits
the following representation: for u ∈ <,

Fu,h(u) =
1

2
− 1

2πj

∫ ∞
−∞

exp

{ ∞∑
n=1

ϕn,h
(µakt)

n

1− ηnk
− jut

}
dt

t
.

Sketch of the proof: A detailed proof is provided in [6].
Here we illustrate the main ideas. Let Φu,h(t) be the log-
characteristic function of uk(∞). A known inversion for-
mula to obtain the CDF Fu,h(u) from the corresponding
log-characteristic function Φu,h(t) is [9]: Fu,h(u) = 1

2 −
1

2πj

∫∞
−∞ eΦu,h(t)−jut dt/t, and therefore the proof reduces to

showing that Φu,h(t) =
∑∞
n=1 ϕn,h

(µakt)
n

1−ηnk
. The key ingre-

dient to show this is the following structural property of the
random variable uk(∞):

x′ + ηk
uk(∞)

µak

d
=

uk(∞)

µak
, (4)

where d
= denotes equality in distribution, and x′ is an inde-

pendent copy of the random variable x. From (4) we get

Φx,h(t) + Φu,h

(
ηk t

µ ak

)
= Φu,h

(
t

µ ak

)
, (5)

and it can be verified by direct substitution that the functional
equation (5) is satisfied by Φu,h(t) =

∑∞
n=1 ϕn,h

(µakt)
n

1−ηnk
. �

Theorem 2: For 0 < τx,h ≤ ∞, the following approximation
holds:

Fu,h(u) ≈ 1

2
− 2

π

n̄u∑
n=0

1

(2n+ 1)
Im

{
exp

[
−j u δu

µak

2n+ 1

2

+ Φx,h

(
2n+ 1

2
δu

)
+

m̄u∑
m=1

ηmk ϕm,h
1− ηmk

(
2n+ 1

2
δu

)m]}
,

(6)

where 0 < δu < τx,h/[ηk(n̄u + 1
2 )] is sufficiently small, and

the integers n̄u and m̄u are sufficiently large.
Proof: The proof follows from [10], [11], by exploiting (4)
and (5). The details are given in [6]. �

In (6), apart from truncating the two series by choosing
sufficiently large integers n̄u and m̄u, the approximation can
be controlled by a suitable choice of δu, as discussed in [6].

The above theorem provides an approximation for the CDF
Fu,h(u) of the continuous component uk(∞) in (3). Next,



we focus on the CDF Fz,h(z), z ∈ <, of the discrete
component zk(∞). First, let us introduce a new random
variable z?k with the same distribution as zk(∞):

zk(∞) = lim
n→∞

S∑
`=1

ck`

n∑
i=1

ηi−1
k x̃`(n− i+ 1)

d
=

S∑
`=1

ck`

∞∑
i=1

ηi−1
k x̃`(i) , z?k. (7)

Second, let us introduce a normalized version of x̃`(n), taking
values in the set {−1,+1}:

b`(i) ,
2 x̃`(i)− (E1x + E0x)

E1x− E0x
. (8)

Using (8), we rewrite z?k as follows:

z?k =

S∑
`=1

ck`
1− ηk

(E1x+ E0x) + (E1x− E0x) zk`
2

, (9)

where

zk` = (1− ηk)

∞∑
i=1

ηi−1
k b`(i). (10)

The series in (10) is known as Bernoulli convolution [12],
and we proceed now to obtain a suitable approximation for
its distribution, which in turn gives an approximation for the
distribution of z?k.

Let us assume that H1 is in force and suppose that pd ,
P1(x ≥ γloc) is sufficiently large, where pd is the agent
detection probability obtained by exploiting only the current
observation. By introducing an integer ωk, we split the series
on the right-hand side of (10) into two parts, as follows

zk` = (1− ηk)

ωk∑
i=1

ηi−1
k b`(i) + (1− ηk)

∞∑
i=ωk+1

ηi−1
k b`(i).

(11)
The second summand on the right-hand side of (11) can be
bounded as:

−ηωkk ≤︸ ︷︷ ︸
=−ηωkk

iff {b`(i)=−1, ∀i>ωk}

(1−ηk)

∞∑
i=ωk+1

ηi−1
k b`(i) ≤ ηωkk︸ ︷︷ ︸

=η
ωk
k

iff {b`(i)=+1, ∀i>ωk}

(12)

and, because of the assumption that pd is large, namely “+1”
is the most likely outcome of b`(i), the expression in (12)
can be approximated by its upper bound ηωkk . From (11), this
yields

zk` ≈ (1− ηk)

ωk∑
i=1

ηi−1
k b`(i) + ηωkk , ẑk`, (13)

with ẑk` ≥ zk`. In view of (12), the approximation in (13)
entails a bounded error, namely, 0 ≤ ẑk` − zk` ≤ 2ηωkk . In-
serting ẑk` into (9) in place of zk` gives an approximation for
z?k, which we denote by ẑ?k. Now, to control the approximation,
let us fix a sufficiently small εk > 0. Simple algebra shows
that

ωk ≥
log E1x−E0x

εk(1−ηk)

log 1
ηk

⇒ 0 ≤ ẑ?k − z?k ≤ εk, (14)

and we therefore select ωk as the smallest integer that verifies
the first inequality in (14) for a sufficiently small εk.

Approximation (13) consists of replacing zk` by ẑk`, which
is a discrete random variable taking on 2ωk values. These
values and the corresponding probabilities can be easily com-
puted, and this gives the probability mass function (PMF)
of ẑk`. Indeed, from (13) we see that each realization of
ẑk` corresponds to a different pattern of ±1 in the string
b`(1), . . . ,b`(ωk), and the probability of this realization de-
pends on the number of “+1” in the string, as follows:
p#of+1
d (1−pd)#of−1. Because ck` 6= 0 for ` ∈ Nk\{k}, replac-

ing zk` by ẑk` in (9), we see that the resulting random variable
ẑ?k is the sum of |Nk| − 1 variables, each with alphabet of
cardinality 2ωk , implying that ẑ?k takes on at most 2ωk(|Nk|−1)

values. The PMF of ẑ?k can be obtained by convolving the
|Nk| − 1 PMFs of ẑk`, ` ∈ Nk \ {k}, which are random
variables independent of each other. This requires |Nk| − 2
convolutions. Implementing these convolutions, we get the
set of realizations of ẑ?k, say {ẑi,h}, and the corresponding
probabilities, say {ν̂i,h}, with i = 1, . . . , L ≤ 2ωk(|Nk|−1).

We have thus derived the CDF F̂z,h(z) of ẑ?k, which is a
staircase function with steps of size {ν̂i,h} at the L points
{ẑi,h}. Since ẑ?k is an approximation of z?k, the CDF F̂z,h(z)
is used as an approximation of the CDF of z?k. This latter is
the same of the CDF Fz,h(z) of zk(∞), as shown in (7). Note
that, because of the inequalities 0 ≤ ẑ?k − z?k ≤ εk in (14), we
have the following relationship between Fz,h(z) and F̂z,h(z):

Fz,h(z − εk) ≤ F̂z,h(z) ≤ Fz,h(z), z ∈ <. (15)

We have characterized the CDFs Fu,h(u) and Fz,h(z) of
the continuous and of the discrete components uk(∞) and
zk(∞), respectively. Consider now the state yk(∞) of agent k
at steady-state. Neglecting the transient component in (3), we
have yk(∞) = uk(∞) + zk(∞), where the two random vari-
ables at the right-hand side are independent. Then, the CDF
Fy,h(y) of the variable yk(∞) is given by the convolution
formula [13], where fu,h(u) is the density of u(∞):

Fy,h(y) =

∫ ∞
−∞

Fz,h(ξ) fu,h(y − ξ) dξ. (16)

Using (15) in (16), we have:

Fy,h(y − εk) =

∫ ∞
−∞

Fz,h(ξ) fu,h(y − εk − ξ) dξ (17a)

=

∫ ∞
−∞

Fz,h(ξ − εk) fu,h(y − ξ) dξ (17b)

≤
∫ ∞
−∞

F̂z,h(ξ) fu,h(y − ξ) dξ (17c)

≤
∫ ∞
−∞

Fz,h(ξ) fu,h(y − ξ) dξ = Fy,h(y). (17d)

If εk is small enough such that fu,h(u) is almost constant over
intervals of length εk, the integral in (17a) is almost equal to
the integral in (17d), and therefore Fy,h(y) is almost equal to
the integral in (17c). This latter reduces to a finite summation,



because F̂z,h(z) is a staircase function with finite number of
steps, and we arrive at the approximation

Fy,h(y) ≈
L∑
i=1

ν̂i,h Fu,h(y − ẑi,h). (18)

B. Computational Considerations

The number L of summands in (18) may be as large as
2ωk(|Nk|−1), which can be problematic for numerical imple-
mentations. The reduction of the computational burden to
obtain Fy,h(y) is now in order. Recall that we are working
under H1, with the assumption that 1− pd � 1.

The cardinality 2ωk of the random variable ẑk` in (13)
can be substantially reduced as follows. Since 1 − pd is
small, the number of occurrences of “−1” in the string
b`(1), . . . ,b`(ωk) is expected to be small. Accordingly, sup-
pose that at most two occurrences of the least likely digit “−1”
occur. Then, the resulting variable takes values in an alphabet
of cardinality 1 + ωk + ωk(ωk − 1)/2, whose elements cor-
respond to the patterns of ±1 in the string b`(1), . . . ,b`(ωk)
with at most two “−1”. The probability of occurrence of
these patterns is given by p#of+1

d (1 − pd)#of−1. In order to
obtain a valid random variable, the aggregate probability of
patterns with more than two occurrences of “−1” that we have
disregarded, must be apportioned amongst the elements of the
alphabet. This apportionment is described in detail in [6] and
the resulting random variable is shown in Table I, where the
subindex k to ωk and ηk is omitted. The random variable
defined in Table I is used as an approximation of ẑk`.

value pattern probability
1 − 2(1 − η) − 2η(1 − η) − − + + · · · + ++ (1 − pd)

2

1 − 2(1 − η) − 2η2(1 − η) − + − + · · · + ++ (1 − pd)
2pd

.

.

.

.

.

.

.

.

.

1 − 2(1 − η) − 2ηω−1(1 − η) − + + + · · · + +− (1 − pd)
2p
ω−2
d

1 − 2(1 − η) − + + + · · · + ++ (1 − pd)p
ω−1
d

1 − 2η(1 − η) − 2η2(1 − η) + − − + · · · + ++ (1 − pd)
2pd

1 − 2η(1 − η) − 2η3(1 − η) + − + − · · · + ++ (1 − pd)
2p2d

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 − 2ηω−3(1 − η) − 2ηω−2(1 − η) + + + + · · · − −+ (1 − pd)
2p
ω−1
d

1 − 2ηω−3(1 − η) − 2ηω−1(1 − η) + + + + · · · − +− (1 − pd)
2p
ω−2
d

1 − 2ηω−3(1 − η) + + + + · · · − ++ (1 − pd)p
ω−1
d

1 − 2ηω−2(1 − η) − 2ηω−1(1 − η) + + + + · · · + −− (1 − pd)
2p
ω−2
d

1 − 2ηω−2(1 − η) + + + + · · · + −+ (1 − pd)p
ω−1
d

1 − 2ηω−1(1 − η) + + + + · · · + +− (1 − pd)p
ω−1
d

1 + + + + · · · + ++ pωd

TABLE I
APPROXIMATION OF THE RANDOM VARIABLE ẑk` .

Additional simplifications for lightening the computational
burden to obtain Fy,h(y) are possible. First, the cardinality
of the random variable in Table I can be further reduced by
aggregating in a single value realizations that are closer than
2ηωkk (if any). Second, the same type of aggregation can be
operated after implementing each of the |Nk|−2 convolutions
that correspond to the summation in (9). In both cases, the
probability assigned to the aggregated symbol is the sum of
the probabilities of the realizations merged together. These

aggregations follow the same spirit of approximation (13),
which entails an error ≤ 2ηωkk .

So far, we have assumed that H1 is in force, but it can
be shown that the same arguments used to obtain the CDF of
yk(∞) apply under hypothesisH0. In this case the assumption
is pf , P0(x ≥ γloc)� 1, and the final result can be obtained
by replacing pd with 1 − pf in the previous derivations, and
elaborating on −zk` rather than zk`. The details are omitted.

IV. EXAMPLE

Consider a network made of S = 10 agents whose topology
is encoded in the connection matrix (19), where the presence
of 1 in position (m,n) means that agents m and n are
neighbors: 

1 0 1 0 1 0 1 0 1 0
0 1 1 0 0 0 0 1 0 0
1 1 1 1 1 0 1 0 0 0
0 0 1 1 0 1 1 0 0 1
1 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 1
1 0 1 1 0 0 1 0 0 1
0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 1 1 0 0 1

 . (19)

Let the combination coefficients ak` be as follows:

ak` =


a, ` = k,

1−a
|Nk|−1 , ` ∈ Nk \ {k},
0, otherwise,

(20)

with 0 < a < 1, and assume γloc = 0 see (2).
Suppose that the i.i.d. observations {rk(n)} are exponen-

tially distributed, under both hypotheses, as follows: r ∼
E(λh) under Hh, h = 0, 1. The symbol r ∼ E(λ) means
that the probability density function of r is λ exp(−λr), for
r ≥ 0. We assume 0 < λ1 < λ0, and define λe , λ0/λ1 > 1.
The log-likelihood is xk(n) = λ1(λe − 1)rk(n)− log λe, and
by straightforward algebra the forthcoming results follow.

Under H0, the log-characteristic function of x is

Φx,0(t) = log
λ1−j t
e

λe − j t (λe − 1)
. (21)

For |t| < τx,0, this function can be expanded in series as
Φx,0(t) =

∑∞
n=1ϕn,0t

n, with

ϕn,0 =

{ (
1− λ−1

e − log λe
)
j, n = 1,

1
n

[(
1− λ−1

e

)
j
]n
, n > 1,

(22)

and the radius of convergence of the series is τx,0 = λe
λe−1 .

The log-characteristic function of x under H1 can be
obtained by a known property of the log-likelihood [14, Eq.
(90), p. 44], which yields Φx,1(t) = Φx,0(t− j). This gives

Φx,1(t) = log
λ−j te

1− j t (λe − 1)
, (23)

which admits the series expansion Φx,1(t) =
∑∞
i=1 ϕn,1t

n,
|t| < τx,1, where

ϕn,1 =

{
(λe − 1− log λe) j, n = 1,
1
n [(λe − 1) j ]

n
, n > 1,

(24)

with radius of convergence τx,1 = 1
λe−1 .
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Fig. 1. Decision performance of agent k = 3, assuming µ = 0.1 and
different combinations of λe and a. The solid curves refer to the approximate
theoretical expressions and small circles denote simulation points.

Using (21)-(24), Theorem 2 gives an approximation for
Fu,h(u), h = 0, 1, which, inserted in (18), gives an approxima-
tion for Fy,h(y). In computing the sequences {ẑi,h} and {ν̂i,h}
appearing in (18) the numerical simplifications described in
Sec. III-B can be applied. Using Fy,h(y), h = 0, 1, the binary
decision performance of agent k is immediately derived in
the form of false alarm probability Pf = P0(yk(∞) ≥ γ)
and detection probability Pd = P1(yk(∞) ≥ γ). The decision
performance of agent k is compared to the results of computer
simulations using 105 independent Monte Carlo runs and
n = 100 iterations. This comparison is shown in Figs. 1
and 2 for the highly connected agent k = 3 and the weakly
connected agent k = 9.

V. FINAL COMMENTS

This work considers an adaptive network made of connected
agents engaged in a binary decision problem, where the
individual agents can process data locally with full precision,
but the inter-agent messages can be only binary. The system
design ensures good adaptation properties, and the theoretical
analysis allows us to derive the approximate decision perfor-
mance in a semi-analytical form that requires the sum of two
truncated series and the numerical implementation of certain
convolutions. Both procedures are reasonably easy and do not
entail severe computational burden.

The analysis shows a nontrivial agent performance which
arises from the interaction between the continuous component
of the agent state, and the discrete component related to the
messages delivered from its neighbors.

As seen in the example shown in Figs. 1 and 2, the
decision performance of the network improves when the self-
combination coefficient a grows. This gain in performance is
paid in terms of lower adaptation capability (which improves
for smaller values of a) revealing an inherent system trade-
off. We also find that the performance curves are smoother
for larger values of a. This can be explained by recalling that
the larger a is, the less credit the agent gives to the messages
coming from its neighbors, and therefore the weaker the effect
of the discrete component becomes.
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Fig. 2. Decision performance of agent k = 9, assuming µ = 0.1 and
different combinations of λe and a. The solid curves refer to the approximate
theoretical expressions and small circles denote simulation points.

Computer experiments show that the accuracy of the ap-
proximation developed tends to improve when the number
of the agent neighbors grows and when the self-combination
coefficient ak decreases. The approximation seems satisfying
for a wide range of system parameters µ and combination
coefficients {ak`}. However, in the limiting regime µ → 0
(vanishing step-size) and ak → 1 (weak agent interactions) the
approximation fails. For this scenario a different approach is
provided in [6], where it is shown that a version of the central
limit theorem applies, leading to a Gaussian approximation for
the agents’ steady-state distributions.
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