
AN EXPONENTIALLY CONVERGENT ALGORITHM FOR LEARNING UNDER
DISTRIBUTED FEATURES

Bicheng Ying∗†, Kun Yuan∗†, and Ali H. Sayed†

∗Department of Electrical Engineering, University of California, Los Angeles
†School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland

ABSTRACT

This work studies the problem of learning under both large data and
large feature space scenarios. The feature information is assumed
to be spread across agents in a network, where each agent observes
some of the features. Through local cooperation, the agents are sup-
posed to interact with each other to solve the inference problem and
converge towards the global minimizer of the empirical risk. We
study this problem exclusively in the primal domain, and propose
new and effective distributed solutions with guaranteed convergence
to the minimizer. This is achieved by combining a dynamic diffusion
construction, a pipeline strategy, and variance-reduced techniques.
Simulation results illustrate the conclusions.

Index Terms— distributed features, dynamic diffusion, con-
sensus, pipeline strategy, variance-reduced method, distributed op-
timization, primal solution.

1. INTRODUCTION AND PROBLEM FORMULATION

We consider empirical risks of the following form, which are com-
mon in learning and optimization formulations (see, e.g., [1–3,5,6]):

R(w) =
1

N

N∑
n=1

Q
(
hT
nw; γn

)
(1)

In (1), the unknown parameter model (or separating hyperplane) is
designated by w ∈ RM , while hn ∈ RM denotes the n-th fea-
ture vector and γn the corresponding label. Moreover, the notation
Q(hTw; γ) refers to the loss function and is assumed to be a differ-
entiable and convex function over w. In most problems of interest,
the loss function is dependent on the inner product hTw rather than
the individual terms {h,w}.

For large data applications, where bothN andM can be large, it
is not uncommon for the dataset to be too large to be stored, or even
processed effectively, at a single location or by a single agent. In this
article, we consider the scenario in which the entries of the feature
vectors are actually distributed over a collection of K networked
agents, as illustrated in Fig. 1. Specifically, we partition each hn,
and similarly the weight vector w, into K sub-vectors denoted by
{hn,k, wk}, where k = 1, 2, . . . ,K:

hn
∆
=


hn,1

hn,2

...
hn,K

 , w
∆
=


w1

w2

...
wk


Each sub-feature vector hn,k and sub-vector wk are assumed to be

located at agent k. In this way, the empirical risk function can be

This work was supported in part by NSF grants CCF-1524250 and
ECCS-1407712. Email: {ybc, kunyuan}@ucla.edu and ali.sayed@epfl.ch

9

5
8

1

2

4

6

7

3

Fig. 1: Distributing the feature across the networked agents.

rewritten in the form

R(w) =
1

N

N∑
n=1

Q

(
K∑

k=1

hT
n,kwk; γn

)
(2)

Observe that in this new form, the argument of the loss function is
now a sum over the inner products hT

n,kwk. That is, we have a “cost-
of-sum” form similar to what was discussed in [7].

Our objective is to optimize (2) over the {wk} and to seek the
optimal values in a distributed manner. Problems of this type have
been pursued before in the literature by using duality arguments,
such as those in [5, 7, 8]. The resulting algorithms suffer from some
limitations. For example, they involve two time-scales: one scale
governs the rate at which data arrives and another faster inner scale
for running averaging iterations multiple times between data arrivals.
This feature limits the rates at which data can arrive because the in-
ner calculation will need to be completed before the arrival of the
next datum. Another limitation is that the resulting algorithms rely
on the use of conjugate functions, which are not always available in
closed form; this will greatly depend on the nature of the loss func-
tion Q(·). Other useful approaches to solving problems of the form
(2) are the Alternating Direction Method of Multipliers (ADMM) [9]
and primal dual-methods [10, 11]. These techniques have good con-
vergence properties but continue to suffer from high computational
costs and two-time scale communications. Problems similar to (2)
were also studied in [12] using primal methods in a deterministic
setting, but the approach is not well-suited for big-data applications.

In this work, we propose a stochastic solution method to (2) that
operates directly in the primal domain. We exploit the idea of dy-
namic consensus algorithm [13, 14], which has been adopted in the
distributed optimization algorithms to track the average of gradients,
see [15–17]. Meanwhile, we are interested in tracking the sum of
score,

∑K
k=1 h

T
n,kwk, due to the different problem setting. By avoid-

ing the dual formulation, we will arrive at a simple and effective
method even for large scale applications. Even more importantly,
we can show that the proposed method is able to converge at a linear
rate to the exact minimizer of R(w) even under constant step-size
learning. The algorithm will not require two time-scales and will not



necessitate the solution of auxiliary sub-optimization problems as is
common in prior methods in the literature.

2. NAÏVE SOLUTION

We first propose a simple and naı̈ve solution, which will be used to
motivate the more advanced algorithms in later sections.

To begin with, let us consider the problem of minimizing (2) by
means of a stochastic gradient recursion. Let αn,k = hT

n,kwk denote
the inner product that is available at agent k at time n and define

zn
∆
=

K∑
k=1

αn,k (3)

If we denote the average of these local inner products by ᾱn
∆
=

1
K

∑K
k=1 αn,k, then the variable zn is a scaled multiple of ᾱn,

namely, zn = Kᾱn. Returning to problem (2), the stochastic gradi-
ent step will involve approximating the true gradient vector of R(w)
by the gradient vector of the loss function evaluated at some ran-
domly selected data pair (zni , γni), where ni at iteration i denotes
the index of the sample pair selected uniformly at random from
the index set {1, 2, . . . , N}. In particular, the stochastic gradient
descent recursion is given by

wi+1 = wi − µ∇zQ(zni ; γni)hni (4)

Note that ni is independent of the iterates {wj}ij=0. Recalling that
hn and w are partitioned into K blocks, we can decompose (4) into
K parallel recursions run at the local agents:

wi+1,k = wi,k − µ∇zQ (zni ; γni)hni,k, k = 1, · · · ,K (5)

One main problem with (5) is that it is not a distributed solu-
tion because agents need to calculate ∇zQ(z; γ) at z whose value
depends on all sub-vectors {wk} from all agents and not just on wk

from agent k. This difficulty suggests one initial solution method.
Since the desired variable zn is proportional to the average

value of ᾱn, then a consensus-type construction can be used to
approximate this average. To do so, neighboring agents share their
{αn,k} and perform consensus iterations repeatedly until they con-
verge close enough to the desired average. This construction would
take the following form. For some total number of iterations J ,
each agent would start from ᾱ

(0)
n,k = αn,k and repeat the following

calculations:

ᾱ
(j)
n,k ←

∑
`∈Nk

a`kᾱ
(j−1)
n,` , j = 1, 2, . . . , J (6)

In this construction, the notation Nk represents the set of neighbors
of agent k, while the {a`k} are nonnegative convex combination
coefficients such that the matrixA = [a`k] is symmetric and doubly-
stochastic, i.e.,

N∑
`=1

a`k = 1,

N∑
k=1

a`k = 1 (7)

Also, we assume akk > 0 for at least one agent k. If J is large
enough, it is known that ᾱn,k will approach the desired average
ᾱn across all agents. However, this mode of operation requires the
agents to complete J consensus updates between two data arrivals
and requires a two-time scale operation: a faster time-scale for the
consensus iterations and a slower time-scale for the data arrivals.
One simplification is to set J = 1 and to have each agent perform
only one single combination step to generate the variable:

ẑni,k =
∑
`∈Nk

a`kKh
T
ni,kwi,k (8)

Algorithm 1 (Naı̈ve feature-distributed method for agent k)

Repeat for i = 1, 2, . . .:

ni ∼ U [1, N ] (uniformly sampled) (9)

ẑni,k =
∑
`∈Nk

a`k(K · hTni,kwi,k) (10)

wi+1,k = wi,k−µ∇zQ
(
ẑni,k; γni

)
hni,k (11)

End

where we are expressing the result of this single combination by
ẑni,k to indicate that this is the estimate for zni that is computed at
agent k at iteration i.

We list the resulting algorithm in (9)–(11). Observe that this
implementation requires all agents to use the same random index ni

at iteration i. Although this requirement may appear restrictive, it
can still be implemented in distributed architectures. For example,
each agent can be set with the same random seed so that they can
generate the same index variable ni at iteration i. Alternatively,
agents can sample the data in a cyclic manner instead of uniform
sampling. In this paper, we assume each agent k will sample the
same index ni at iteration i for simplicity.

2.1. Limitations
Algorithm 1 is easy to implement. However, it suffers from two
major drawbacks. First, the variable ẑni,k generated by the com-
bination step (10) is not generally a good approximation for the
global variable zni . This approximation error affects the stability
of the algorithm and requires the use of very small step-sizes. A
second drawback is that the stochastic-gradient implementation (9)–
(11) will converge to a small neighborhood around the exact mini-
mizer rather than to the exact minimizer itself [3, 18]. In the follow-
ing sections, we will design a more effective solution.

3. CORRECTING THE APPROXIMATION ERROR

3.1. Dynamic Diffusion Strategy
Inspired by the dynamic average consensus method [13,14], we will
design a stochastic diffusion-based algorithm to correct the error in-
troduced by the one-step average consensus (10). To motivate the
algorithm, let us step back and assume that each agent k in the net-
work is observing some dynamic input signal, assuming that each
agent k observes the dynamic input signal ri,k ∈ RM , that changes
with time i. Assume we want to develop a scheme to ensure that
each agent k is able to track the average of all local signals, i.e.
r̄i = 1

K

∑K
k=1 ri,k. For that purpose, we formulate an optimization

problem of the form:

min
x∈RP

Ci(x) =
1

K

K∑
k=1

1

2
‖x− ri,k‖2 (12)

where the cost function Ci(x) is changing with time i. The global
minimizer of Ci(x) is the desired average r̄i. However, we would
like the agents to attain this solution in a distributed fashion. To this
end, we apply the exact diffusion algorithm [19, 20] to solve (12).
The algorithm simplifies to the following recursions:

ψi+1,k = xi,k − µ(wi,k − ri+1,k) (13)

φi+1,k = ψi+1,k + xi,k − ψi,k (14)

xi+1,k =
∑
`∈Nk

a`kφi+1,` (15)



Since the Lipschitz constant L of Ci is always 1, we can set µ =
1/L = 1 in (13) and combine all three recursions to get

xi+1,k =
∑
`∈Nk

a`k (xi,` + ri+1,` − ri,`) (16)

with x0,k = r0,k for any k. It can be proved that each xi,k will track
r̄ = 1

K

∑K
k=1 rk very well when ri,k converges to rk as i → ∞

[13, 19, 20]. We refer to (16) as the dynamic diffusion method.
We now apply this intermediate result to the earlier recursion

(5). Recall that there we need to evaluate the variable

zni =

K∑
k=1

hT
ni,kwi,k (17)

Calculating this quantity is similar to solving problem (12). How-
ever, there is one key difference: the signal hni is not deterministic
but stochastic and it varies randomly with the data index ni. This
suggests that in principle we should keep track of N variables zn,
one for each possible n = 1, 2, . . . , N . This is of course not fea-
sible for large data. Instead, we propose a more efficient solution
where the data is sparsely sampled as we proceed to describe. As-
sume first, for the sake of argument only, that we move ahead and
compute the variable zn for every possible value for n. If we do so,
we would need to repeat construction (16) a total of N times, one
for each n, as follows:

zi+1
1,k =

∑
`∈Nk

a`k
(
zi

1,` +K · hT
1,`wi,` −KhT

1,`wi−1,`

)
(18)

...

zi+1
N,k =

∑
`∈Nk

a`k
(
zi
N,` +K · hT

N,`wi,` −KhT
N,`wi−1,`

)
(19)

In this description, we are adding a superscript i to each zi
n,k to

indicate the iteration index. In this way, each zi
n,k will be able to

track the sum
∑K

k=1 h
T
n,kwi,k. However, since the data size N is

usually very large, it is too expensive to communicate and update all
{zn,k}Nn=1 per iteration. We will propose a stochastic algorithm in
which only one data hni,k will be selected at iteration i and only the
corresponding entry zi+1

ni,k
be updated while all other zi+1

n,k will stay
unchanged for n 6= ni:{

zi+1
ni,k

=
∑

`∈Nk
a`k
(
zj
ni,`

+KhT
ni,`

wi,` −KhT
ni,`

wj−1,`

)
zi+1
n,k = zi

n,k, n 6= ni (20)

where the index j in the first equation refers to the most recent iter-
ation where the same index ni was chosen the last time. Note that
the value j depends on ni and the history of sampling, and therefore
we need to store the inner product value that is associated with it. To
fetch zn,kj and KhT

ni,`
wj−1,` easily, we introduce two auxiliary

variables:
ui

ni,k ←zj
ni,`

, vi
ni,k ← KhT

nj ,kwj−1,k (21)

3.2. Variance-Reduction Algorithm
We can enhance the algorithm by accounting for the gradient noise
that is present in (4): this noise is the difference between the true
gradient of the cost function and the gradient of the loss function
that is used in (4). It is known in [3,18,21] that under constant step-
size adaptation, and due to the gradient noise, recursion (4) will only
approach an O(µ)−neighborhood around the global minimizer. We
can modify the recursion to ensure convergence to the exact mini-
mizer as follows.

There is a family of variance-reduction algorithms such as
SVRG [22], SAGA [23], and AVRG [24] that can approach the ex-

Algorithm 2 [Variance-reduced dynamic diffusion
(VRD2) for learning from distributed features]

Initialization: Set w0,k = 0; u0
n,k = 0; v0

n,k = 0.
Repeat for i = 1, 2, . . .:

ni ∼ U [1, N ] (uniformly sampled) (22)

zni,k =
∑
`∈Nk

a`k
(
ui
ni,`+Kh

T
ni,`wi,`−vi

ni,`

)
(23)

wi+1,k = wi,k−µ

{[
∇zQ

(
zni,k;γni

)
−∇zQ

(
ui
ni,k;γni

)]
hni,k

+
1

N

N∑
n=1

∇zQ
(
ui
n,k; γn

)
hn,k

}
(24)

ui+1
n,k =

{
zi+1
ni,k

, if n = ni

ui
n,k, otherwise

(25)

vi+1
n,k =

{
KhTni,k

wk,i, if n = ni

vi
n,k, otherwise

(26)

End

act solution with constant step-size. In this work, we exploit SAGA
construction because the variables {un,k} can readily be used in that
implementation. In this case, the stochastic gradient recursion(5) at
each agent k will be modified to (24) with two correction terms. The
resulting algorithm is summarized in Algorithm 2.

4. ACCELERATION WITH PIPELINE

Algorithm 2 can be shown to converge to the solution of problem
(1) for sufficiently small step-sizes. However, it is observed in nu-
merical experiments that the convergence rate of Algorithm 2 can be
slow. One reason is that the variable zn,k generated by (23) con-
verges slowly to

∑K
k=1 h

T
n,kwi,k. To accelerate its convergence, it

is necessary to run (23) multiple times before the gradient descent
step (24), which, however, will result in a two-time-scale algorithm.
In this section, we propose a pipeline method that can accelerate the
convergence of zn,k while maintaining the one-time-scale structure.

A pipeline is a set of data processing elements connected in se-
ries, where the output of one element is the input to the next one. We
assume each agent k stores J variables at iteration i:

[z
(0)
ni,k

,z
(1)
ni−1,k

, · · ·z(J−1)
ni−J+1,k

] ∈ RJ , (27)

where z
(j)
ni−j ,k

is the result after j average dynamic diffusion recur-
sions (23). The subscript ni−j indicates that z is computed from the
index selected at time i − j and iterates wi−j . Thus, z(j+1)

ni−j−1,k
is

not z(j)
ni−j ,k

after one dynamic diffusion step. At iteration i, we let
each agent k run a one-step average consensus recursion:

[z
(1)
ni,k

,z
(2)
ni−1,k

, · · ·z(J)
ni−J+1,k

]

=
∑
`∈Nk

a`k[z
(0)
ni,`

,z
(1)
ni−1,`

, · · ·z(J−1)
ni−J+1,`

] (28)

When the above recursion finishes, agent k pops up the variable
z

(J)
ni−J+1,k

from memory and uses it to continue the stochastic gra-

dient descent steps. Since z(J)
n,k is the result after J dynamic average



iterations

Pop out

Push in

Consensus
steps

Fig. 2: Illustration of the pipeline strategy with buffer length J = 3.

consensus recursions, it can be viewed as a good approximation for∑K
k=1 h

T
n,kwn,k. At iteration i+1, agent k will push a new variable

z0
ni+1,k

= KhT
ni+1,k

wi+1,k into buffer.
Recursion (28) employs the pipeline strategy. For example, vari-

able z
(1)
ni,k

is updated at iteration i. This new output z(1)
ni,k

will then
be the second input at iteration i and is used to produce the output
z

(2)
ni,k

. Next, the output z(2)
ni,k

will be the third input at iteration i+2

and is used to produce the output z(3)
ni,k

. If we follow this procedure,

the output z(J)
ni,k

will be reached at iteration i+ J − 1. At that time,

we can pop up z(J)
ni,k

and use it in the stochastic gradient steps. The
pipeline procedure is summarized in the “Pipeline function” shown
above, and Fig. 2 also illustrates the pipeline strategy.

The pipeline strategy has two advantages. First, it is able to
calculate z(J)

n,k without inner loop, which accelerates the algorithm
and maintains the one-time-scale structure. Second, in one iteration,
the two-time-scale solution sends a scalar J times while the pipeline
solution sends J-length vector just once. Though the communication
load is the same, the pipeline solution is usually faster than the two-
time-scale approach in practice. That is because sending a scalar
with J time needs all agents to synchronize for J times, which can
take longer time than the one-time communication.

Theorem 1 Under the assumption that the risk R(w) is v-strongly
convex and has Lipschitz continuous gradient with respect to z and
w, Algorithm PVRD2 converges at a linear rate for sufficiently small
step-sizes µ, i.e.,

E ‖wi,k − w?‖2 ≤ ρiC, ∀k, i > 0 (29)

for some constant C, where:

ρ = max

(
1− 1− λJ

2N
, 1− µν/4

)
(30)

and λ is the magnitude of the second largest eigenvalue of A.

Pipeline function

Initialization: zni,k = 0 for any i ≤ 0

Function Pipeline
(
z

(0)
ni,k

, vi+J−1
ni,k

)
Push

[
z

(0)
ni,k

, vi+J−1
ni,k

]
into the queue (36)

[z
(1)
ni,k

,z
(2)
ni−1,k

, · · ·z(J)
ni−J+1,k

]

=
∑
`∈Nk

a`k[z
(0)
ni,`

,z
(1)
ni−1,`

, · · ·z(J−1)
ni−J+1,`

] (37)

Pop
[
z

(J)
ni−J+1,k

, vi
ni−J+1,k

]
out of the queue (38)

Return
[
z

(J)
ni−J+1,k

, vi
ni−J+1,k

]

Algorithm 3 [Pipelined variance-reduced dynamic diffu-
sion (PVRD2) learning]

Initialization: Set w0,k = 0; u0
n,k = 0; v0

n,k = 0.
Repeat for i = 1, 2, . . .:

ni ∼ U [1, N ] (uniformly sampling) (31)[
z

(J)
n′i,k

,vi+1
n′i,k

]
(denote n′i

∆
= ni−J+1) (32)

= Pipeline
(
ui
ni,k+Kh

T
ni,kwi,k−vi

ni,k, Kh
T
ni,kwi,k

)
wi+1,k = wi,k−µ

{[
∇zQ

(
z

(J)
n′i,k

;γn′i
)
−∇zQ

(
ui
n′i,k

;γn′i
)]
hn′i,k

+
1

N

N∑
n=1

∇zQ
(
ui
n,k; γn

)
hn,k

}
(33)

ui+1
n,k =

{
z

(J)
n′i,k

, if n = n′i

ui
n,k, otherwise

(34)

vi+1
n,k =

{
vi+1
n′i,k

, if n = n′i

vi
n,k, otherwise (35)

End

5. SIMULATION
We exam on the MNIST dataset, which consists of 50000 28 × 28
handwritten digits. In the simulation, we consider the classification
task of predicting digit 0 and digit 1. We separate the features into
8 networked agents. From top two subplots in Fig. 3, we see that
each agent is in charge of part of w, and each converges to its corre-
sponding part of w?. Next, we compare our algorithm to the method
proposed in [12] with some modification, which can be viewed as the
deterministic full-gradient version of our algorithm without pipeline.
To make a fair comparison, we plot the convergence curve based on
the count of gradients calculated in bottom of Fig. 3. The curve
shows that the larger J we set, the faster the algorithm converges.

agent 1: w_1

agent 3: w_3

agent 5: w_5

agent 7: w_7

agent 2: w_2

agent 4: w_4

agent 6: w_6

agent 8: w_8

0 2000 4000 6000 8000 10000 12000 14000

#gradient calculated

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

‖w
i
−
w

‖2

PVRD2: J=1

PVRD2: J=3

PVRD2: J=5

PVRD2: J=10

Alg. in [12]

Fig. 3: Top left: Visualization of wi,k; Top right: Visualization of
w?. Bottom: Illustration of the convergence behavior.



6. REFERENCES

[1] C. M. Bishop, Pattern Recognition and Machine Learning,
Springer, 2006.

[2] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning, Springer, 2009.

[3] A. H. Sayed, “Adaptation, learning, and optimization over net-
works,” Foundations and Trends in Machine Learning, vol. 7,
no. 4–5, pp. 311–801, 2014.

[4] S. Kar and J. M. F. Moura, “Distributed consensus algorithms
in sensor networks with imperfect communication: Link fail-
ures and channel noise,” IEEE Transactions on Signal Pro-
cessing, vol. 57, no. 1, pp. 355–369, 2009.

[5] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed
Computation: Numerical Methods, Prentice Hall, NJ, 1989.

[6] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient meth-
ods for online learning and stochastic optimization,” Journal of
Machine Learning Research, vol. 12, no. Jul, pp. 2121–2159,
2011.

[7] J. Chen, Z. J. Towfic, and A. H. Sayed, “Dictionary learning
over distributed models,” IEEE Transactions on Signal Pro-
cessing, vol. 63, no. 4, pp. 1001–1016, 2015.

[8] B. Ying and A. H. Sayed, “Diffusion gradient boosting for
networked learning,” in International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2017, pp.
2512–2516.

[9] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Foundations and Trends in
Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[10] T.-H. Chang, A. Nedic, and A. Scaglione, “Distributed con-
strained optimization by consensus-based primal-dual pertur-
bation method,” IEEE Transactions on Automatic Control, vol.
59, no. 6, pp. 1524–1538, 2014.

[11] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Puschel, “Dis-
tributed basis pursuit,” IEEE Transactions on Signal Process-
ing, vol. 60, no. 4, pp. 1942–1956, 2012.

[12] S. Sundhar, A. Nedić, and V. V. Veeravalli, “A new class of
distributed optimization algorithms: Application to regression
of distributed data,” Optimization Methods and Software, vol.
27, no. 1, pp. 71–88, 2012.

[13] M. Zhu and S. Martinez, “Discrete-time dynamic average con-
sensus,” Automatica, vol. 46, no. 2, pp. 322–329, 2010.

[14] R. A. Freeman, P. Yang, and K. M. Lynch, “Stability and con-
vergence properties of dynamic average consensus estimators,”
in 45th IEEE Conference on Decision and Control, 2006, pp.
338–343.

[15] A. Nedic, A. Olshevsky, and W. Shi, “Achieving geomet-
ric convergence for distributed optimization over time-varying
graphs,” SIAM Journal on Optimization, vol. 27, no. 4, pp.
2597–2633, 2017.

[16] S. Pu, W. Shi, J. Xu, and A. Nedich, “A push-pull gradient
method for distributed optimization in networks,” Avaible at
arXiv:1803.07588, 2018.

[17] R. Xin and U. A. Khan, “A linear algorithm for optimization
over directed graphs with geometric convergence,” Avaible at
arXiv:1803.02503, 2018.

[18] K. Yuan, B. Ying, S. Vlaski, and A. H. Sayed, “Stochastic gra-
dient descent with finite samples sizes,” in Proc. IEEE Interna-
tional Workshop on Machine Learning for Signal Processing,
Salerno, Italy, 2016, pp. 1–6.

[19] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact dffu-
sion for distri- buted optimization and learning – Part I: Algo-
rithm development,” submitted for publication and available as
arXiv:1702.05122, Feb. 2017.

[20] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact dffu-
sion for distri- buted optimization and learning – Part II: Con-
vergence analysis,” submitted for publication and available as
arXiv:1702.05122, Feb. 2017.

[21] B. T. Polyak, Introduction to Optimization, Optimization Soft-
ware, NY, 1987.

[22] R. Johnson and T. Zhang, “Accelerating stochastic gradient de-
scent using predictive variance reduction,” in Proc. Advances
in Neural Information Processing Systems (NIPS), Lake Tahoe,
Navada, 2013, pp. 315–323.

[23] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast in-
cremental gradient method with support for non-strongly con-
vex composite objectives,” in Proc. Advances in Neural Infor-
mation Processing Systems (NIPS), Montreal, Canada, 2014,
pp. 1646–1654.

[24] B. Ying, K. Yuan, and A. H. Sayed, “Variance-reduced
stochastic learning under random reshuffling,” submitted for
publication. Also available at arXiv:1708.01383, Aug. 2017.


	 Introduction and Problem Formulation
	 Naïve Solution
	 Limitations

	 CORRECTING THE APPROXIMATION ERROR
	 Dynamic Diffusion Strategy
	 Variance-Reduction Algorithm

	 Acceleration with pipeline
	 Simulation
	 References

