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Abstract—This work considers the problem of reconstructing
the topology of a network of interacting agents via observations of
the state-evolution of the agents. A divide-and-conquer strategy
is developed where the network is reconstructed via repeated
applications of local reconstructions. In each step, observations
from only a subset of the nodes are collected, and the information
is used to infer their local connectivity. A fundamental result is to
establish that local tomography is possible with high probability.
Once established, this step is then used as a building block for
reconstructing the larger network.

Index Terms—Network inference, local inference, big-data,
large-scale networks, network tomography.

I. INTRODUCTION

In networked dynamical systems [1]–[4] the state of the
agents comprising the network evolves over time and is af-
fected by peer-to-peer interactions among the connected nodes.
In general, information about the network graph is unavailable
and one may be able to observe measurements from only
a subset of the network nodes over time. It is the goal of
network tomography to extract information about the network
connectivity from observables. In this work we propose an
algorithm to perform network tomography for large-scale
graphs. A divide-and-conquer strategy is developed where the
network is reconstructed via repeated applications of local
tomography steps to different patches of the network, denoted
by S1, . . . , SP . In each step, observations from only a subset
of the nodes (or a patch) are collected, and the information is
used to infer their local connectivity, as illustrated in Fig. 1.
A fundamental result is to establish that local tomography is
possible with high probability. Once established, this step is
then used as a building block for reconstructing the larger
network graph.

Some key factors motivate the divide-and-conquer approach
developed in this work. Thus note that in large-scale networked
systems, such as brain neuron networks or large Internet-
of-Things networks, one can only observe and/or process
limited portions of the system per experiment in order to
make inference or extract information about the system. There
are two fundamental reasons that cause this limitation due to
limited probing abilities and limited processing-time abilities:
• Probing-limit. The acquisition of data and storage capac-

ities are often far smaller than the scale of the network.
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Fig. 1. Illustration of the local tomography problem. The goal is to
devise a mechanism to reconstruct the underlying subnetwork topology by
appropriately processing the state-evolution of the observable nodes.

• Processing-limit. The complexity of the data-mining fur-
ther constrains the size of the data that can be processed.

For instance, one may probe the activity of a subset of
neurons – as it is unfeasible to track the activity of all the brain
neuron network – in order to reconstruct its underlying profile
of interactions (a.k.a. connectome). This requires to partially
observe the system at each experiment and extract information
about its underlying subnetwork of interactions. One could
hopefully sequentially integrate the inference results of the
various local tomographic experiments as an attempt to deduce
global information about the large-scale networked system, in
particular, its topology (which is object of inference).

Related work. Most works focus on full-observability
where the state of all agents can be tracked and processed. In
the context of linear (or linearized) dynamical systems, partic-
ular attention is paid to (autoregressive) diffusion models [5]–
[9]. The majority of the literature addresses tomography by
exploring commonalities between covariance constructs on
the data and the underlying graph of interactions; and by
further resorting to optimization-based methods that reinforce
some (application-dependent) structural constraints such as,
e.g., sparsity, stability and symmetry. For instance, refer-
ences [6], [7] explore the spectral commonalities between
the underlying combination matrix and the covariance of
the observed samples, which reduces the set of candidate
topologies, and the inverse problem is then addressed via an
optimization method that reinforces sparsity. A Wiener filter
based approach is explored in [10] yielding an approximation
of the true topology, although certain non-interacting pairs
end up being classified as interacting. Nonlinear dynamics
are often dealt with via linear variational characterizations of
the dynamics [11]–[13] (which yield linear models resembling
the dynamics in equation (1)) or by appropriately increasing



the dimension of the observable space [14], [15]. Regarding
partial observability, references [16], [17] provide sufficient
conditions on the network structure that allows reconstruction.
Such conditions depend strongly on the network structure
and may not be suitable to a large-scale network setting. In
contrast, our result matches well the large-scale paradigm. In
fact, by modeling the large network through a random graph,
we are able to obtain simple average conditions (e.g., in terms
of the probability that two nodes are connected) that guarantee
topology reconstruction with high probability as the network
size scales to infinity.

Preliminary notation.
• In what follows, we use boldface letters to denote random

variables, and normal font letters for their realizations.
• Given an N × N matrix Z, the submatrix that lies in

the rows and columns of Z indexed by the set S ⊆
{1, 2, . . . , N}, will be denoted by [Z]S .

II. NETWORK AND DATA MODEL

We assume that the state of each agent evolves over time
as a result of the interaction with its neighbors. Formally, the
state yi(n) of each agent i ∈ {1, 2, . . . , N}, at time n, obeys
the following stochastic dynamical system:

yi(n) =

N∑
`=1

ai` y`(n− 1) + xi(n)⇔ yn = Ayn−1 + xn

(1)
where yn = [y1(n),y2(n), . . . ,yN (n)] is a column vector
collecting the states of all nodes at time n, A = [ai`] is a
combination matrix, and xn = [x1(n),x2(n), . . . ,xN (n)] is
a column vector modeling a random input (e.g., streaming
data or noise). We assume that {xi(n)} are independent and
identically distributed (i.i.d.) both spatially (i.e., w.r.t. to i) and
temporally (i.e., w.r.t. to n), with zero-mean and unit variance.
We observe from (1) that, if ai` = 0, then agent i does not
use the information arriving from agent ` to update its own
state. Therefore, the support-graph of A reflects the underlying
topology.

The stochastic dynamical system (1) arises naturally in the
context of adaptive diffusion networks [18], [19]. It also arises
in economics, e.g., [5], and is also used as a variational
characterization of nonlinear networked dynamical systems,
e.g., [11]. In other words, tomography analysis over such
family of stochastic dynamical systems is useful for a broad
class of networked systems.

We observe that the dynamical system in (1) implies the
following relationship among the correlation matrix R0(n) ,
E[yny

T
n ], the one-lag correlation matrix R1(n) , E[yny

T
n−1],

and the combination matrix A:

R1(n) = AR0(n− 1)
n→∞−→ R1 = AR0, (2)

where R0 and R1 are the limiting correlation matrices (as-
suming A stable). Therefore, since there exist many ways to
estimate R0 and R1 consistently as n → ∞, the relationship
A = R1R

−1
0 reveals one possible strategy to estimate A (and

hence its support) from the output of the diffusion process,
yn. This is a scheme to consider when the state evolution of
all nodes over time can be observed (full observation).

Under a large-scale network setting, only a subset S of
the network is accessible. For this case, the combination
matrix pertaining to the observed subset S of nodes is AS =[
R1R

−1
0

]
S

, which cannot be computed in the framework of
local tomography as only the submatrices associated with the
observable agents, [R0]S and [R1]S , are available (or can be
estimated). One could certainly consider an approximation for
the true estimator AS =

[
R1R

−1
0

]
S

as:

ÂS = [R1]S ([R0]S)
−1 (3)

It is clear from basic linear algebra that ÂS 6= AS . However, a
key result established in [18] is that ÂS provides a consistent
estimator for AS , with high probability, under certain reason-
able conditions on the combination matrix A. The result in
Theorem 1 builds on reference [18] and is established in [20].

III. KEY RESULT AND ALGORITHM: PATCH-AND-CATCH
(PAC)

Let GS be the adjacency matrix corresponding to the
connecting observed agents S, with arbitrary topology. Let G
be the global adjacency matrix for the network of N nodes.
We assume that the connections of G are drawn as follows.{

P (gij = 1) = pN , if i /∈ S or j /∈ S
gij = [GS ]ij , if i, j ∈ S (4)

where the edges gij are drawn with probability pN and
independently over the pairs ij when i /∈ S or j /∈ S. In other
words, GS is a subnetwork of G with arbitrary (deterministic)
topology and the complementary network is drawn as an
Erdös-Rényi. We assume that G (and hence GS) is unknown.
The goal is to estimate GS via observing the state evolution
of the observable agents in S.

To each graph G, we can assign (positive) weights to the
edges of G and denote the resulting matrix of weights by
A. Some useful choices are the Laplacian and the Metropolis
rules, defined as follows. Let ρ ∈ (0, 1) and λ ∈ (0, 1 ]:
• Laplacian rule.

aij =

{
ρλgij/dmax, for i 6= j
ρ−

∑
k 6=i aik, for i = j

, (5)

• Metropolis rule.

aij =

{
ρgij/max {di, dj} , for i 6= j
ρ−

∑
k 6=i aik, for i = j

, (6)

where di is the degree of agent i and dmax is the maximum
degree in the network. These rules arise naturally in the context
of adaptive diffusion networks [19].

Theorem 1 (Exact local tomography). Let G be a graph
generated as described above and let A be any nonnegative
symmetric N×N matrix with support graph G (as constructed



above) and obeying certain stability conditions1. Furthermore,
assume that the connection probabilities are of the form pN =
(1/N)(logN + cN ), with cN being any divergent sequence
such that [log(logN + cN )]2/ logN → 0. Then, there exists
τ > 0 so that

lim
N→∞

P[Γτ (NpN ÂS) = GS ] = 1 (7)

where Γτ (B) = I{bij>τ} corresponds to the adjacency matrix
obtained from the matrix B by τ -thresholding its entries and
ÂS is the truncated estimator given by (3).

Theorem 1 is a key (yet highly non-trivial) result; its proof
is omitted – it builds on [18] and is established in [20].
The theorem essentially asserts the possibility of performing
local tomography over large-scale diffusion networks. This is
because it establishes the existence of a threshold τ such
that the entries of the naïve estimator ÂS provide correct
local tomography with high-probability. In particular, let η ∆

=
τ/(NpN ). Then, the topology of the observable network can
be recovered for sufficiently large N as follows: If âij ≤ η,
then classify ij as non-interacting, otherwise if âij > η, then
classify ij as interacting. We still need to select an appropriate
threshold τ in order to correctly classify interacting and non-
interacting pairs from the truncated estimator ÂS . We observe
that prior information on the dynamical system (1) can help in
the choice. In particular, if we know the average degree NpN
of the network and the nature of the combination matrix, e.g.,
Laplacian or Metropolis, then we can estimate a threshold. For
the Laplacian or Metropolis rules, we could set

ηL = ρ/ (eNpN ) , ηM = ρλ/ (eNpN ) , (8)

respectively, as these are thresholds that meet the limit in (7).
We remark that Theorem 1 is an asymptotic (in N ) result, and
that even in the presence of prior information there can be a
range of possible thresholds yielding correct classification in
the limit. It is not clear at this stage how to optimize this
threshold in order to grant high performance in the finite-
network scenario. A higher threshold reduces the likelihood
of classifying non-interacting pairs as interacting, whereas a
lower threshold increases that likelihood.

When prior information is not available, we can follow an
alternative non-parametric approach by applying a k-means
clustering algorithm (using k = 2) to the off-diagonal entries
of ÂS . The clustering algorithm will end up splitting the
off-diagonal entries into two clusters (connected and non-
connected). The cluster with higher arithmetic mean is classi-
fied as the one corresponding to connected nodes.

In this work, we empirically estimate the truncated correla-
tion matrices [R0]S and [R1]S from the observed data as

[R1]S =
nmax−1∑
n=0

[yn+1]S [yn]
>
S

[R0]S =
nmax∑
n=0

[yn]S [yn]
>
S

. (9)

1We omit the details, but the conditions can be found in [18] and are
satisfied by the Laplacian and the Metropolis rules.

We remark that it is possible to optimize such estimates
by exploiting prior information on the structural properties
of the system, and such an optimization could boost the
performance of the algorithm. In equation (9), we have not
used boldface notation to emphasize that the observed yn
refers to a particular realization.

Algorithm. We now describe our divide-and-conquer to-
mography algorithm. We let M be the probing capacity (so
that no more than M agents can be observed per experiment).
Let S be the subset of nodes in which the subnetwork GS
is to be reconstructed. The set S is partitioned into the
subsets (or patches) S1, . . . , SP with cardinality |Si| ≤M/2,
for i = 1, 2, . . . , P . Each local reconstruction experiment
will correspond to probing two patches, resulting in a total
of P (P − 1)/2 experiments. Note that only probing and
reconstructing each patch Si is not sufficient to reconstruct
GS as all connections between nodes across distinct patches
will be missed.

Algorithm 1 Patch-and-Catch (PAC) Strategy for Network
Tomography
Input: Ensemble of patches {S1, . . . , SP } and observ-

ables
{

[yn]Si

}
over the patches i = 1, . . . , P and for time

n = 0, 1, . . . , nmax
Output: Estimated adjacency matrix AS associated with the

subnetwork GS of observable nodes
1: while i ≤ P do
2: while j < i do

3: [R1]Si∪Sj
=
nmax−1∑
n=0

[yn+1]Si∪Sj
[yn]
>
Si∪Sj

4: [R0]Si∪Sj
=
nmax∑
n=0

[yn]Si∪Sj
[yn]
>
Si∪Sj

5: ASi∪Sj = [R1]Si∪Sj

(
[R0]Si∪Sj

)−1

6: Ai,j = k-means
(
ASi∪Sj

)
7: j = j + 1
8: end while
9: j = 1

10: i = i+ 1
11: end while

IV. NUMERICAL EXPERIMENTS

In this section, we illustrate the practical performance of the
PAC algorithm. We start with the single-patch case in order to
illustrate the asymptotic result of Theorem 1 while providing
a preview of the multi-patch case.

Single-patch. Figure 2 displays the (empirically-estimated)
topology-recovery probability, with reference to an overall
network with number of nodes N ranging from 10 to 200,
and for the case of Laplacian and Metropolis combination
rules with ρ = 0.8 and λ = 1. The observable network is
made up of K = 10 nodes. The probability of correct recovery
gets close to 1 as N increases for all the considered scenar-
ios: parametric versus k-means thresholding, and empirically
estimated truncated correlation matrices (as in equation (9))



Fig. 2. Empirical topology-recovery probability versus size of overall net-
work. Thresholding means that the entries of ÂS were thresholded with ηL
and ηM (refer to equation (8) in Section III). Empirical correlation means
that the truncated correlations were estimated as in (9), whereas the curves
with known correlations are also displayed as a superior limit in performance.

versus known truncated correlation matrices. We notice that
the recovery probability curve is not monotonic. Indeed, when
N = K = 10, all the network is observed, and in view of
equation (2) (and the comments that follow this equation) the
recovery probability must be equal to 1. On the other hand,
Theorem 1 ensures that exact recovery should be also attained
asymptotically (in N ). As discussed, a break in performance
in a pre-limit region is not surprising, especially for the non-
optimal thresholding method based on the prior information
as discussed in the previous section.

Multi-patch. We consider an overall network of N = 300
nodes. We apply the PAC algorithm in a sub-region S with
K nodes and probing capacity of M < K. That is, at each
tomographic experiment we can only probe and reconstruct a
subnetwork of M nodes within S. The goal is to reconstruct
the subnetwork GS associated with the agents in S. The
overall graph G is generated as an Erdös-Rényi radom graph
with probability of connection pN = 5 (logN) /N . The
combination matrix A is obtained via the Metropolis rule. The
k-means algorithm is adopted as the thresholding method. The
truncated correlation matrices are empirically estimated from
the data as in equation (9) with nmax = 105 samples.

Regarding the patches, and as described in Section III, we
assume that S1, . . . , SP form a partition of the subset S of
interest with |Si| = M/2. That is, S =

⋃P
i=1 Si and Si∩Sj =

∅ for all i 6= j. Each local inference experiment corresponds
to probing two patches, resulting in a total of P (P − 1)/2
experiments.

We consider two cases. In the first, we assume K = 20 and
in the second K = 60. In both cases we assume the probing
limit M = 10. The smaller K in the first case allows to
illustrate graphically the reconstruction of the subnetwork GS
by the PAC algorithm as depicted in Fig. 3. In the second case,
we rather illustrate the evolution of the distance between the
true graph GS and the estimated graph as more experiments
are performed, Fig. 4. We assume that initially the estimated
graph has no edges and we define the (normalized) distance

1 2

3 4
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Fig. 3. Illustration of the graph reconstruction. We consider K = 20 nodes
with probing limit M = 10. Each patch has |Si| = 5 nodes. At each
experiment two patches are probed. The red nodes represent the nodes being
probed at each experiment and the red edges represent the inferred edges up
to the current experiment. All pairs were correctly classified.
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Fig. 4. Illustration of the monotonic decrease of the distance between the
subnetwork GS and the estimator as more patches are probed. We consider
K = 60 nodes in S with probing limit M = 10. Each patch has |Si| = 5
nodes. We have P = 2K/M = 12 patches. At each experiment two patches
are probed, yielding a total of P (P − 1)/2 = 66 experiments. The graph
displays the distance between GS and the estimated graph at the experiment
` = 1, 2, . . . , 66. Only two pairs were misclassified.

between two undirected graphs (or their corresponding adja-
cency matrices) G(1) and G(2) on K nodes as

dist
(
G(1), G(2)

)
=

∑
i<j

∣∣∣g(1)
ij − g

(2)
ij

∣∣∣
K(K − 1)/2

. (10)
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