
i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 1 — #1 i
i

i
i

i
i

CHAPTER

1Distributed Kalman and
Particle Filtering

Ali H. Sayed,∗, Petar M. Djurića,∗∗ and F. Hlawatsch†
∗Ecole Polytechnique Federale de Lausanne, EPFL, CH-1015 Lausanne; ∗∗Stony Brook University,

Department of Electrical and Computer Engineering, Stony Brook, NY 11794, USA; †TU Wien, Institute

of Telecommunications, 1040 Vienna, Austria
aCorresponding: petar.djuric@stonybrook.edu

ABSTRACT
This chapter discusses distributed Kalman and particle filtering algorithms for state estima-
tion in decentralized multi-agent networks. It is assumed that the spatially distributed agents
acquire local measurements with information about a time-varying state described by some
underlying state-space model. The agents seek to estimate the time-varying state in a decen-
tralized manner. They are only allowed to interact locally by sharing data or estimates with
their immediate neighbors. It is shown how the agents can construct local estimates of the state
trajectory through a cooperative process of interactions. Both diffusion- and consensus-based
strategies are presented.

Keywords: distributed sequential estimation, distributed Kalman filtering, distributed
particle filtering, diffusion, distributed proposal adaptation, likelihood consensus, target
tracking, wireless agent network.

1.1 DISTRIBUTED SEQUENTIAL STATE
ESTIMATION

Distributed strategies can be applied to solving state-space filtering and smoothing
problems [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. In these applica-
tions, agents interconnected by communication links seek to track the state of some
underlying state-space model based on their own measurements and information ex-

1

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 2 — #2 i
i

i
i

i
i

2 CHAPTER 1 Chapter Title

changed with their neighbors.
Many natural and man-made systems can be modeled as dynamic systems de-

scribed by state-space models [19, 20, 21]. The state of a dynamic system com-
prises certain system-related quantities of interest, such as the location and veloc-
ity of a moving vehicle or the concentration of a pollutant in a chemical plume.
The state is time-varying and unknown. Each agent acquires local measurements
and benefits from sharing information with neighboring agents. In this chapter,
we consider distributed time-sequential methods for estimating the state from re-
curring measurements acquired by spatially distributed agents, where each agent is
able to communicate only with a limited set of spatially close neighboring agents
[1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18].

The objective of this chapter is to provide an overview of distributed state-space
estimation for linear and nonlinear models, with emphasis on filtering and prediction
problems while noting that similar techniques can be applied to smoothing prob-
lems [12]. In the first part of our treatment, we motivate and examine the diffusion
Kalman filter for one-step prediction by following the general approach outlined in
[12, 15, 18]. Similar diffusion strategies for fixed-lag and fixed-point smoothing ap-
pear in [12]. We focus on the diffusion Kalman form because it has been shown in
[15, 18, 22, 23] that diffusion implementations have superior stability and tracking
performance when optimizing aggregate costs in response to streaming data. In the
second part of the chapter, we describe distributed particle filtering, where we focus
on both consensus-based and diffusion-based approaches. The methods we present
can be used in a wide range of applications including surveillance, localization and
navigation, environmental and agricultural monitoring, target tracking, exploration,
search and rescue, the Internet of Things, and logistics.

1.1.1 THE SETUP
The problem of interest is the estimation of a state xn ∈ R

N , where n ∈ {1, 2, . . .}
is a discrete time index, from sequences of measurements {z1,k, z2,k, . . . , zn,k}, with
zi,k ∈ R

p, observed up to the current time n at K different agents k ∈ {1, 2, . . . ,K}.
More specifically, we are interested in estimating xn in a time-sequential and dis-
tributed manner. Time-sequential processing means that the estimation of xn at
time n recursively reuses relevant results from the estimation of xn−1 at time n − 1
while incorporating the new measurements zn,k, k = 1, 2, . . . ,K. Distributed process-
ing means that the estimation of xn is done locally at the individual agents, which
exchange relevant information in a spatially local manner. Such a distributed (de-
centralized) mode of operation has important advantages over a centralized mode
[17, 16]. For example, it does not require a fusion center collecting all the mea-
surements, which would constitute a “single point of failure.” It also does not need
communication between distant points or the use of complex routing strategies. The
distributed solution is further robust to network node and link failures and is able to
adapt to changing network topologies. Moreover, the computational complexity and
communication cost per agent scale well with the network size (number of agents).

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 3 — #3 i
i

i
i

i
i

1.2 Distributed Kalman Filtering 3

The topology of local information exchange is defined by a decentralized net-
work of agents in which each agent k is able to communicate with a certain set of
“neighbor” agents Nk ⊆ {1, 2, . . . ,K}. This set Nk also includes agent k. Usually,
the neighbors of an agent are located in its proximity. Practical examples of decen-
tralized agent networks include robotic networks, networks of unmanned terrestrial,
aerial or underwater vehicles, and networks of cameras. We assume that the agent
network is connected, i.e., each agent is connected to any other agent via one or
multiple “communication hops.”

Since the measurements are dispersed among the agents rather than available at a
single processing unit, an important aspect of any distributed estimation algorithm is
the dissemination of agent-related (and possibly other) information through the net-
work via local communication. Various dissemination schemes are available, such
as consensus [24, 25], gossip [26, 27], and diffusion [12, 15, 18]. A performance
benchmark for a distributed algorithm is the performance that would be achieved by
a centralized algorithm that has direct access to all the measurements. The amount
of communication that is required for good performance is an important property of
a distributed algorithm, since communication increases the power consumption and
processing delay of the agents.

A summary of the notation used in this chapter is presented in Table 1.1.

1.2 DISTRIBUTED KALMAN FILTERING
In the first part of our treatment, we motivate and examine the diffusion Kalman filter
for one-step prediction by following the general approach outlined in [12, 15, 18].
We start with a brief description of the network topology and an introduction of the
data model.

1.2.1 NETWORK TOPOLOGY
We consider a network consisting of K agents connected according to some graph
topology. A left-stochastic K × K matrix A = (a`k) is associated with the topology,
where each entry a`k denotes a nonnegative scaling factor that will be used to scale
some of the data transitioning from agent ` to agent k (likewise for ak`). The left-
stochasticity of A means that it satisfies

AT1K = 1K , (1.1)

so that the entries on each column of A add up to one (the symbol 1K represents a
K × 1 vector of ones). We assume that the graph is strongly-connected. The connect-
edness condition means that, for any two agents ` and k, there always exist paths with
nonzero scaling weights in A linking ` and k in either direction; the path from ` to k
does not need to agree with the reverse path from k to `. Strong-connectedness addi-
tionally means that there exists at least one agent in the graph with akk > 0. That is,

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 4 — #4 i
i

i
i

i
i

4 CHAPTER 1 Chapter Title

Table 1.1 Summary of notation.
Notation Description
n ∈ {1, 2, . . .} discrete time index
xn ∈ R

N state vector at time k
k ∈ {1, 2, . . . ,K} agent index
K number of agents
zn,k ∈ R

p measurement vector of agent k at time n

zn
∆
= (zT

n,1 zT
n,2 · · · zT

n,K)T vector of all agent measurements at time n

z1:n
∆
= (zT

1 zT
2 · · · zT

n)T all-agents measurement sequence up to time n
Nk ⊆ {1, 2, . . . ,K} set of neighboring agents of agent k (including agent k)
dk = |Nk | cardinality of set Nk

A a left stochastic matrix
J adjacency matrix
1K K × 1 vector with elements equal to 1
δn j Kronecker delta function
∝ equal up to a constant factor
Fn and Gn state matrices of the linear state-space model
Hn,k local data matrix of the linear state-space model
Qn covariance matrix of the state noise process
Rn,k covariance matrix of the observation noise process
Π0 covariance matrix of initial state
IN N × N identity matrix
gn(xn−1,un) state-evolution function at time k
un state noise at time n
f (xn|xn−1) state-transition probability density function
hn,k(xn, vn,k) observation function of agent k at time n
vn,k observation noise of agent k at time n
f (zn,k |xn) local likelihood function of agent k
f (zn|xn) global (all-agents) likelihood function
f (xn|z1:n) posterior probability density function
E [·] expectation
x(m)

n mth particle of the state xn

w(m)
n weight of the particle x(m)

n

M number of particles
q(xn|x(m)

n−1) importance probability density function
ln(·) natural logarithm
N(· ;µ,Σ) Gaussian probability density function

at least one agent places some trust or confidence on its local data. These conditions
are satisfied by most graphs of interest. It follows from the strong-connectedness

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 5 — #5 i
i

i
i

i
i

1.2 Distributed Kalman Filtering 5

condition that the left-stochastic matrix A is primitive [15].

1.2.2 LINEAR STATE-SPACE MODELS
We consider a linear state-space model defined by

xn+1 = Fnxn + Gnun, n = 0, 1, . . . , (1.2)
zn,k = Hn,k xn + vn,k, n = 0, 1, . . . ; k = 1, 2, . . . ,K, (1.3)

where Fn and Gn are state matrices, and Hn,k is a local data matrix. The noise
vectors un and vn,k are assumed to be realizations of zero-mean white processes with
covariance matrices denoted by Qn and Rn,k, respectively,

E

(un

vn,k

) (
u j

v j,k

)T ∆
=

(
Qn 0
0 Rn,k

)
δn j, (1.4)

where δn j denotes the Kronecker delta: it is equal to one when n = j and zero oth-
erwise. The measurement noise vectors vn,k are also assumed to be independent of
each other across space (i.e., for different k), that is,

E
[
vn,kvT

j,`
]

= Rn,kδk`δn j. (1.5)

The initial state vector, x0, is assumed to have zero mean and covariance matrix

E
[
x0xT

0
]

= Π0 > 0, (1.6)

and it is uncorrelated with un and vn,k, for all n and k. The notation Π0 > 0 signifies
that Π0 is a positive definite matrix. We further assume that Rn,k > 0. The parameter
matrices {Fn,Gn,Qn,Π0,Hn,k, Rn,k} are considered known by each agent k. Note that
no Gaussian asssumptions are made.

1.2.3 NON-COOPERATIVE FILTERING
Assume initially that each agent k in the network acts individually and uses solely its
local data stream zn,k, n = 1, 2, . . . , to track the state vector xn. In this case, agent k
can run the well-known Kalman filter in any of its various forms (covariance, mea-
surement and time-update, or information form) to carry out this task [19, 28, 29].
For instance, let x̂ind

n,k| j denote the linear least-mean-squares error (LLMSE) estimate
of xn by agent k using all the local measurements up to time j, i.e., {z1,k, z2,k, . . . , z j,k}.
The superscript “ind” is used to emphasize that these estimators are based on individ-
ual (non-cooperative) behavior. We denote the corresponding estimation error and
error-covariance matrix by

x̃ind
n,k| j

∆
= xn − x̂ind

n,k| j, (1.7)

Pind
n,k| j

∆
= E

[
x̃ind

n,k| j
(
x̃ind

n,k| j
)T

]
. (1.8)

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 6 — #6 i
i

i
i

i
i

6 CHAPTER 1 Chapter Title

Then, it is well known [28, 29] that predicted (when j = n − 1) and/or filtered (when
j = n) state estimates can be computed by agent k by one of several forms, listed
below.

Covariance form of the non-cooperative Kalman filter
start with x̂ind

0,k|−1 = 0, Pind
0,k|−1 = Π0.

repeat at every agent k for n ≥ 0 :

eind
n,k = zn,k − Hn,k x̂ind

n,k|n−1

Rind
e,n,k = Rn,k + Hn,k Pind

n,k|n−1 HT
n,k

Kind
p,n,k = Fn Pind

n,k|n−1 HT
n,k

(
Rind

e,n,k

)−1

x̂ind
n+1,k|n = Fn x̂ind

n,k|n−1 + Kind
p,n,keind

n,k

Pind
n+1,k|n = Fn Pind

n,k|n−1 FT
n − Kind

p,n,k Rind
e,n,k

(
Kind

p,n,k

)T
+ GnQnGT

n

end

(1.9)

Measurement and time-update form of the non-cooperative Kalman filter
start with x̂ind

0,k|−1 = 0, Pind
0,k|−1 = Π0.

repeat at every agent k for n ≥ 0 :

(measurement-update)
eind

n,k = zn,k − Hn,k x̂ind
n,k|n−1

Rind
e,n,k = Rn,k + Hn,k Pind

n,k|n−1 HT
n,k

x̂ind
n,k|n = x̂ind

n,k|n−1 + Pind
n,k|n−1 HT

n,k

(
Rind

e,n,k

)−1
eind

n,k

Pind
n,k|n = Pind

n,k|n−1 − Pind
n,k|n−1 HT

n,k

(
Rind

e,n,k

)−1
Hn,k Pind

n,k|n−1

(time-update)
x̂ind

n+1,k|n = Fn x̂ind
n,k|n

Pind
n+1,k|n = Fn Pind

n,k|n FT
n + GnQnGT

n

end

(1.10)

Information form of the non-cooperative Kalman filter
start with x̂ind

k,0|−1 = 0,
(
Pind

k,0|−1

)−1
= Π−1

0 .

repeat at every agent k for n ≥ 0 :(
Pind

n,k|n

)−1
=

(
Pind

n,k|n−1

)−1
+ HT

n,k R−1
n,k Hn,k(

Pind
n,k|n

)−1
x̂ind

n,k|n =
(
Pind

n,k|n−1

)−1
x̂ind

n,k|n−1 + HT
n,k R−1

n,k zn,k

x̂ind
n,k+1|n = Fn x̂ind

n,k|n

Pind
n+1,k|n = Fn Pind

n,k|n FT
n + GnQnGT

n

end

(1.11)

Clearly, these non-cooperative forms assume that the agents act individually.

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 7 — #7 i
i

i
i

i
i

1.2 Distributed Kalman Filtering 7

However, since all the agents are tracking the same state vector xn, it is expected
that the mean-square-error performance can improve through cooperation by having
neighboring agents share with each other information about their own estimators. We
consider one initial form of cooperation before extending it to arrive at the diffusion
Kalman filter later in Subsection 1.2.7.

1.2.4 INCREMENTAL COOPERATION
Consider an arbitrary agent k and let Nk denote its neighborhood, i.e., the collection
of all agents ` that are connected to agent k by edges and that can share information
with it. This set includes also the agent k. The set comprises all agents ` for which
a`k > 0; its cardinality is denoted by dk = |Nk |.

In addition to its own measurement vector zn,k, at each time instant n, agent k
has also access to the measurement vectors {zn,`} from its neighbors, ` ∈ Nk\{k}. In
this way, at every time instant n, agent k has access to |Nk | measurement vectors
(its own measurements and the ones collected from its neighbors) and denoted by
{zn,k1 , zn,k2 , . . . , zn,kdk

}. In this notation, we are referring to the neighbors of agent k
(including agent k itself) by the indices {k1, k2, . . . , kdk }. Let x̂loc

n,k| j denote the LLMSE
estimate of xn obtained by agent k (including agent k) by using these local (or neigh-
borhood) measurements from time 0 up to time j. The superscript “loc” is used to
emphasize that these estimators are based on local neighborhood measurements. We
denote the corresponding estimation error and error-covariance matrix by

x̃loc
n,k| j

∆
= xn − x̂loc

n,k| j, (1.12)

Ploc
n,k| j

∆
= E

[
x̃loc

n,k| j
(
x̃loc

n,k| j
)T

]
(1.13)

Then, as shown in listing (1.14), the predicted (when j = n − 1) and filtered (when
j = n) state estimates can be computed by agent k by running multiple measurement-
updates, one for each neighbor of k [28, 29]. In this listing, we are denoting the state
estimate at the end of the incremental loop through the neighborhood by ψn,k, which
is equal to the filtered estimate x̂loc

n,k|n that results from the dk measurement updates.
This equality is highlighted by the symbol (?) placed next to one of the equations
in listing (1.14). The corresponding error covariance matrix of x̂loc

n,k|n is denoted by
Ploc

n,k|n. Although the variables ψn,k and x̂loc
n,k|n are identical in the incremental imple-

mentation, we keep separate notations for both symbols because they will be distinct
and will play different roles in the diffusion form derived further ahead in Subsec-
tion. 1.2.7. In particular, the (?) assignment will be replaced by (1.48).

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 8 — #8 i
i

i
i

i
i

8 CHAPTER 1 Chapter Title

Measurement and time-update incremental form
start with x̂loc

0,k|−1 = 0, Ploc
0,k|−1 = Π0.

repeat at every agent k for n ≥ 0 :

(incremental measurement-updates)
set auxiliary variables:

ψ(0)
n,k ← x̂loc

n,k|n−1 (N × 1 vector)

P(0)
n,k ← Ploc

n,k|n−1 (N × N matrix)

for each neighbor m = 1, 2, . . . , dk do:

en,km = zn,km − Hn,kmψ
(m−1)
n,k

Re,n,km = Rn,km + Hn,km P(m−1)
n,k HT

n,km

ψ(m)
n,k = ψ(m−1)

n,k + P(m−1)
n,k HT

n,km
R−1

e,n,km
en,km

P(m)
n,k = P(m−1)

n,k − P(m−1)
n,k HT

n,km
R−1

e,n,km
Hn,km P(m−1)

n,k

end

Ploc
n,k|n ← P(dk)

n,k

ψn,k ← ψ
(dk)
n,k

x̂loc
n,k|n ← ψ

(dk)
n,k (?)

(time-update)
x̂loc

n+1,k|n = Fn x̂loc
n,k|n

Ploc
n+1,k|n = Fn Ploc

n,k|n FT
n + GnQnGT

n

end

(1.14)

It can be verified that the following relations hold for the variables in the incre-
mental form (1.14) — see the proof in [12, Appendix B]:(

Ploc
n,k|n

)−1
=

(
Ploc

n,k|n−1

)−1
+ Sn,k, (1.15)

with

Sn,k
∆
=

∑
`∈Nk

HT
n,`R

−1
n,`Hn,`, (1.16)

and (
Ploc

n,k|n

)−1
x̂loc

n,k|n =
(
Ploc

n,k|n−1

)−1
x̂loc

n,k|n−1 + qn,k, (1.17)

with

qn,k
∆
=

∑
`∈Nk

HT
n,`R

−1
n,` zn,`. (1.18)

Recursions (1.14) compute the optimal local estimate x̂loc
n,k|n of agent k by incor-

porating solely the measurements {zn,`} from the neighborhood Nk. This is a limited
form of cooperation since the recursions (1.14) are not exploiting the fact that be-

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 9 — #9 i
i

i
i

i
i

1.2 Distributed Kalman Filtering 9

sides the measurements {zn,`}, the neighbors of agent k also have their own estimates
of xn. These estimates are given by x̂loc

n,`|n. It is expected that by additionally exploit-
ing the neighborhood estimates, agent k should be able to achieve two objectives: (a)
enhance its state estimation accuracy and (b) have its local estimate x̂loc

n,`|n approach
the desired global estimate x̂n|n of the state vector xn (which would be produced by
an optimum centralized estimator that has access to all the measurements in the net-
work). We shall use this observation to motivate and derive the diffusion Kalman
filter. First, however, we take a brief digression and review a well-known data fusion
construction [28, 29], which will be used to form approximate local estimates.

1.2.5 DATA FUSION
A problem that is encountered often in applications deals with the need to fuse to-
gether data collected from several sources in order to enhance the accuracy of the
estimation process. This is similar to the scenario we are facing in the network con-
text, except that the graph topology and the time evolution of the data add a new level
of complexity in the form of cross-correlations.

Thus, assume for a moment that we have a collection of K agents that are dis-
tributed over some region in space without paying particular attention to whether they
are connected by a communication link or not. All agents are interested in estimating
the same parameter vector of size N × 1, denoted generically by x, which is assumed
to be zero-mean and to have a positive definite covariance matrix Πx = E [xxT]. For
example, the agents could be tracking a moving object with the goal of estimating
its speed and direction of motion. Each agent k collects a measurement vector zk of
size p × 1 that is related to the desired x via the linear measurement model (observe
that in the discussion in this section we are not dealing with sequential processing of
the data and, therefore, the time index is dropped),

zk = Hk x + vk, (1.19)

where Hk is the model matrix that maps x to zk at agent k and vk is zero-mean
measurement noise with a positive definite covariance matrix Rk = E [vkvT

k].
Assume initially that the measurements from all agents can be collected centrally

at some fusion center. For example, each agent k could transmit its measurement
vector zk and its model parameters {Hk, Rk} to the fusion center. The data collected
at the fusion center thus satisfy the linear model:

z1
z2
...

zK

︸ ︷︷ ︸
∆
= z

=


H1
H2
...

HK

︸ ︷︷ ︸
∆
= H

x +


v1
v2
...

vK

︸ ︷︷ ︸
∆
= v

. (1.20)

We assume that the noises {vk} across all agents k are uncorrelated with each other

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 10 — #10 i
i

i
i

i
i

10 CHAPTER 1 Chapter Title

so that the covariance matrix of the aggregate noise vector v is block diagonal and
given by

Rv = blkdiag{R1, R2, . . . , RK}. (1.21)

Now, it is well known that the LLMSE estimate of x that is based on z is given by
[28, 29]

x̂ =
(
Π−1

x + HTR−1
v H

)−1
HTR−1

v z, (1.22)

with the resulting minimum mean-square-error (MMSE) matrix equal to

P ∆
= E

[
x̃x̃T] =

(
Π−1

x + HTR−1
v H

)−1
, (1.23)

where x̃ = x − x̂ denotes the estimation error. Note that P is a matrix of size N × N.
The solution (1.22) requires all agents to transmit their raw data {zk,Hk, Rk} to the

fusion center. A more efficient fusion method, one that reduces the communications
overhead, can be derived by allowing the agents to perform some local processing
and to share the results of this processing step rather than their raw data. Specifically,
assume that each agent estimates x using first its own data zk. We denote the resulting
estimator by x̂k and it is given by

x̂k =
(
Π−1

x + HT
k R−1

k Hk

)−1
HT

k R−1
k zk. (1.24)

The corresponding MMSE is

Pk =
(
Π−1

x + HT
k R−1

k Hk

)−1
. (1.25)

Next, assume that the agents share the processed data {x̂k, Pk} with the fusion center
instead of the raw data {zk,Hk, Rk}. We now show that the desired global quantities
{x̂, P} can be recovered directly from the locally generated data {x̂k, Pk}.

To begin with, observe that we can rework expression (1.23) for the global
MMSE matrix as follows:

P−1 = Π−1
x +

K∑
k=1

HT
k R−1

k Hk =

K∑
k=1

P−1
k − (K−1)Π−1

x . (1.26)

This expression allows the fusion center to determine P−1 directly from knowledge
of the quantities {P−1

k ,Π−1
x }. Note further that the global estimate expression (1.22)

can be rewritten as

P−1 x̂ = HTR−1
v z =

K∑
k=1

HT
k R−1

k zk =

K∑
k=1

P−1
k x̂k. (1.27)

Therefore, we arrive at the following alternative method to fuse the data from multi-

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 11 — #11 i
i

i
i

i
i

1.2 Distributed Kalman Filtering 11

ple agents:

P−1 =

K∑
k=1

P−1
k − (K−1)Π−1

x , (1.28)

P−1 x̂ =

K∑
k=1

P−1
k x̂k. (1.29)

Observe that the individual estimates are scaled by the inverses of their MMSE ma-
trices. It is useful to note that the derivation of these expressions requires the noises
across the agents to be uncorrelated with each other, so that Rv is block diagonal.

1.2.6 APPROXIMATE FUSION RELATIONS
Let us now return to the network context and use the fusion expressions (1.28) and
(1.29) to motivate the diffusion Kalman filter. Let x̂n|n denote the filtered estimate of
xn that is based on the observations z j,k from across all agents k = 1, 2, . . . ,K at all
times j up to time n. Let Pn|n denote the corresponding error covariance matrix, i.e.,

Pn|n
∆
= E

[
x̃n|n x̃T

n|n
]
, where x̃n|n

∆
= xn − x̂n|n. (1.30)

These are the global quantities that we are interested in evaluating in a distributed
manner. We can employ the fusion expressions (1.28) and (1.29) to approximate
these global variables in terms of the non-cooperative variables {x̂ind

n,k|n, Pind
n,k|n} as fol-

lows:

P−1
n|n ≈

K∑
k=1

(
Pind

k,n|n

)−1
− (K−1)Π−1

n , (1.31)

P−1
n|n x̂n|n ≈

K∑
k=1

(
Pind

n,k|n

)−1
x̂ind

n,k|n, (1.32)

where Πn
∆
= E

[
xnxT

n
]

denotes the covariance matrix of xn, which satisfies the recur-
sion

Πn+1 = FnΠnFT
n + GnQnGT

n . (1.33)

Relations (1.31) and (1.32) are approximate expressions, while relations (1.28) and
(1.29) are exact fusion formulae. To see why, recall that the global estimate x̂n|n

is based on the observations z j,k from time j = 0 up to time j = n across all agents
k. If we now appeal to the state-space model described by (1.2) and (1.3), it is
easy to recognize that these observations cannot generally be related directly to the
unknown xn via a linear model of the form (1.19). Exact fusion formulae in this case
are cumbersome and require the use of error cross-covariance matrices (see, e.g.,
[30, 31, 32]). The above approximations, however, are sufficient for our purposes
and they are commonly used in the literature on data fusion methods, including the

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 12 — #12 i
i

i
i

i
i

12 CHAPTER 1 Chapter Title

following simpler form:

P−1
n|n ≈

K∑
k=1

(
Pind

k,n|n

)−1
, (1.34)

where the term involving Π−1
n is ignored. Expression (1.32) amounts to estimating

x̂n|n by using a covariance-weighted combination of the local estimates, x̂ind
n,k|n, while

expression (1.34) estimates the error covariance matrix by pooling together the indi-
vidual error covariances.

In principle, the same fusion expressions (1.28) and (1.29) could also be used to
approximate the same global variables {x̂n|n, Pn|n} in terms of the incremental (neigh-
borhood) estimates {ψn,k, Ploc

n,k|n} defined in Subsection 1.2.4, say as:

P−1
n|n x̂n|n ≈

K∑
k=1

(
Ploc

n,k|n

)−1
ψn,k, (1.35)

P−1
n|n ≈

K∑
k=1

(
Ploc

n,k|n

)−1
, (1.36)

where we recall that ψn,k = x̂ loc
n,k|n. However, observe now that the construction of

the estimates ψn,k across agents relies on shared observations. For example, the
observations from both agent k and its neighbors influence the value of ψn,k; likewise,
some of these same observations influence the value of other estimates because they
belong to the neighborhoods of other agents as well. This data redundancy is not
present in the computation of the individual estimates x̂ind

n,k|n, where each agent k
relies solely on its local sequential data zn,k.

The presence of redundant information in the intermediate estimates ψn,k is due
to the graph topology, which defines the neighborhoods over the network. We can
exploit this topology to replace the approximations (1.35) and (1.36) by more reveal-
ing relations that bring forth the graph structure. To do so, we let J denote the K × K
adjacency matrix of the network graph. This matrix consists of unit and zero entries
representing the connectivity of the agents, namely,

J`k =

{
1, if a`k > 0
0, otherwise . (1.37)

Although unnecessary in the final statement of the algorithm, we shall assume for the
sake of the derivation that there exists a vector s such that Js = 1K . For example,
if J happens to be invertible, then this vector s exists, is unique, and is given by
s = J−11K . In general, however, it is not always guaranteed that a vector s satisfying
Js = 1K exists. It is nevertheless possible to verify that the matrix J can be made
invertible by flipping some of its diagonal entries (from zero to one and from one to
zero). By turning a diagonal entry of J from zero to one, we are in effect allowing
the agent at that location to rely on its local measurement. On the other hand, by
turning a diagonal entry of J from one to zero, we are disabling this feature. This

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 13 — #13 i
i

i
i

i
i

1.2 Distributed Kalman Filtering 13

action is tolerable because this measurement is not discarded by the network since
it is still used by the neighbors of the agent to update their estimates (as long as at
least one entry of the row of J with a diagonal entry equal to zero has a value equal
to one). We denote the entries of s by γk, k = 1, 2, . . . ,K, or s = col{γk} so that

Js = 1K ⇐⇒

K∑
k=1

γk J`k = 1, for every ` = 1, 2, . . . ,K. (1.38)

In a manner similar to (1.32) and (1.34), we first use the fusion expressions (1.28)
and (1.29) to approximate the incremental estimators {ψn,k, Ploc

n,k|n} by using the non-
cooperative variables {x̂ind

n,k|n, Pind
n,k|n} as follows:

(
Ploc

n,k|n

)−1
ψn,k ≈

K∑
`=1

J`k
(
Pind

n,`|n

)−1
x̂ind

n,`|n, (1.39)

(
Ploc

n,k|n

)−1
≈

K∑
`=1

J`k
(
Pind

n,`|n

)−1
. (1.40)

Recall that the individual estimates x̂ind
n,k|n rely on independent streams of data and

that J`k = 1 if information can flow from agent ` to agent k, and J`k = 0 otherwise.
Using the above relations we can now relate the global variables {x̂n|n, Pn|n} to the

local variables {ψn,k, Ploc
n,k|n} and replace (1.35) and (1.36). Indeed, using the entries

γk, we note that
K∑

k=1

γk

(
Ploc

n,k|n

)−1
ψn,k

(1.39)
≈

K∑
`=1

 K∑
k=1

γk J`k

︸ ︷︷ ︸
=1

(
Pind

n,`|n

)−1
x̂ind

n,`|n

=

K∑
`=1

(
Pind

n,`|n

)−1
x̂ind

n,`|n
(1.32)
≈ P−1

n|n x̂n|n (1.41)

and, similarly,
K∑

k=1

γk

(
Ploc

n,k|n

)−1 (1.40)
≈

K∑
`=1

(
Pind

n,`|n

)−1 (1.34)
≈ P−1

n|n. (1.42)

In summary, we arrive at the following approximate relations between the global
variables {x̂n|n, Pn|n} and the neighborhood variables {ψn,k, Ploc

n,k|n}:

P−1
n|n x̂n|n ≈

K∑
k=1

γk

(
Ploc

n,k|n

)−1
ψn,k, (1.43)

P−1
n|n ≈

K∑
k=1

γk

(
Ploc

n,k|n

)−1
. (1.44)

These relations replace (1.35) and (1.36), where the graph structure is represented

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 14 — #14 i
i

i
i

i
i

14 CHAPTER 1 Chapter Title

through the scalars γk.

Remark (Covariance-intersection method). Expressions (1.43) and (1.44) have a
form similar to another commonly used fusion technique that relies on the use of
the covariance-intersection (CI) method [33, 34] and which avoids the need for error
cross-covariance matrices. In the CI method, the global variables {x̂n|n, Pn|n} are
estimated according to (1.43) and (1.44) where the scalars γk are instead treated as
design parameters. Specifically, they are chosen as nonnegative convex combination
coefficients satisfying

∑K
k=1 γk = 1, γk ≥ 0, and their values are selected to optimize

the resulting Pn|n, say, by minimizing the trace or determinant of Pn|n, i.e.,

min
{γk}

Tr(Pn|n) or min
{γk}

det(Pn|n). (1.45)

1.2.7 DIFFUSION COOPERATION
Continuing with (1.43) and (1.44), one difficulty with these expressions is that com-
putation of the global estimator x̂n|n requires access to the local estimators {ψn,`} from
across the entire network. We can obtain a decentralized solution that relies solely
on local interactions as follows. Substituting (1.44) into (1.43) gives

x̂n|n ≈

 K∑
k=1

γk

(
Ploc

n,k|n

)−1
−1 K∑

k=1

γk

(
Ploc

n,k|n

)−1
ψn,k, (1.46)

which has the form of a convex weighted average, namely,

x̂n|n ≈

K∑
k=1

Γkψn,k (1.47)

with nonnegative-definite coefficient matrices Γk that add up to the identity matrix,
i.e,

∑K
k=1 Γk = IN . The result (1.47) suggests one useful approximation by which the

local estimators {ψn,`} can be fused within the neighborhood of every agent k to ob-
tain a local version for x̂n|n, which we shall denote by x̂n,k|n (we are removing the
“loc” superscript). This local version is obtained by limiting the convex combination
operation (1.47) to the neighborhood of each agent, and by replacing the matrix com-
bination weights Γ` by convex combination scalars a`k. In this way, the computation
(1.47) is replaced locally by

x̂n,k|n ←
∑
`∈Nk

a`kψn,` . (1.48)

Comparing with the incremental listing (1.14), we see that the above calculation
amounts to replacing the assignment x̂loc

n,k|n ← ψn,k (marked by (?) in (1.14)) by a
local convex combination step. In view of this substitution, the error covariances of
the local estimators x̂n,k|n computed by (1.48) are not given anymore by the matrices
Pn,k|n in the listings (1.49) and (1.52) below (where again we removed the super-
script “loc”). In summary, we arrive at the listings (1.49) and (1.52) for the diffusion

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 15 — #15 i
i

i
i

i
i

1.2 Distributed Kalman Filtering 15

Kalman filter in two equivalent forms: the measurement and time-update form and
the information form.

More generally, and in view of (1.47), a more enhanced fusion of the local esti-
mators {ψn,`} is possible by employing convex combination matrices in (1.48) rather
than scalars; for example, these combination matrices could be defined in terms of
the inverses P−1

n,`|n as suggested by (1.46). This construction, however, would en-
tail added complexity and would require sharing of additional information regard-
ing these inverses. The implementation (1.49) from [12] employs scalar combi-
nation coefficients {a`k} in order to reduce the complexity of the resulting algo-
rithm. Reference [35] studies the alternative fusion of the estimators {ψn,`} in the
diffusion Kalman filter by exploiting information about the inverses P−1

n,`|n and us-
ing covariance-intersection combinations over neighborhoods in a manner similar to
(1.45).

Diffusion Kalman filter (measurement and time-update form)
start with x̂0,k|−1 = 0, P0,k|−1 = Π0.

repeat at every agent k for n ≥ 0 :

(measurement-updates)
set auxiliary variables:

ψ(0)
n,k ← x̂n,k|n−1 (N × 1 vector)

P(0)
n,k ← Pn,k|n−1 (N × N matrix)

for each neighbor ` = 1, 2, . . . , dk do:

en,k` = zn,k` − Hn,k`ψ
(`−1)
n,k

Re,n,k` = Rn,k` + Hn,k` P(`−1)
n,k HT

n,k`

ψ(`)
n,k = ψ(`−1)

n,k + P(`−1)
n,k HT

n,k`
R−1

e,n,k`
en,k`

P(`)
n,k = P(`−1)

n,k − P(`−1)
n,k HT

n,k`
R−1

e,n,k`
Hn,k` P(`−1)

n,k

end

Pn,k|n ← P(dk)
n,k

ψn,k ← ψ
(dk)
n,k

(combination step)

x̂n,k|n =
∑
`∈Nk

a`kψ`,n

(time-update)
x̂n+1,k|n = Fn x̂n,k|n

Pn+1,k|n = Fn Pk,n|n FT
n + GnQnGT

n

end

(1.49)

We also note that the combination step in (1.52) is similar to the update used in
the consensus Kalman filter derived in [5] with one main difference. The consensus
Kalman filter employs a specific combination construction at the local level of the

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 16 — #16 i
i

i
i

i
i

16 CHAPTER 1 Chapter Title

form:

x̂n,k|n = (1 + (1−dk)ε)ψn,k +
∑

`∈Nk\{k}

ε ψn,`, (1.50)

where we recall that dk = |Nk |, and ε > 0 is a small weight that is equal for all neigh-
bors. In comparison, the diffusion implementation (1.52), which can be written as

x̂n,k|n = akk ψn,k +
∑

`∈Nk\{k}

a`k ψn,`, (1.51)

allows more freedom in assigning generally different weights a`k to different neigh-
bors [10, 12].

Diffusion Kalman filter (information form)
start with x̂0,k|−1 = 0,

(
P0,k|−1

)−1
= Π−1

0 .

repeat at every agent k for n ≥ 0 :

Sn,k =
∑
`∈Nk

HT
n,`R−1

n,`Hn,`

qn,k =
∑
`∈Nk

HT
n,`R−1

n,` zn,`

(Pn,k|n)−1 = (Pn,k|n−1)−1 + Sn,k

ψn,k = x̂n,k|n−1 + Pn,k|n(qn,k − Sn,k x̂n,k|n−1)

x̂n,k|n =
∑
`∈Nk

a`kψn,`

x̂n+1,k|n = Fn x̂n,k|n

Pn+1,k|n = Fn Pn,k|n FT
n + GnQnGT

n

end

(1.52)

1.2.8 PERFORMANCE ANALYSIS
In view of the approximations (1.44) and (1.48), it is important to examine the mean-
square error performance of the resulting diffusion Kalman filter. In this section, we
examine how close the local estimates {x̂n,k|n} get to the state variable xn by evaluating
the size of the mean-square error in steady-state after the filter has had sufficient time
to learn.

We start by collecting all state estimation errors from across the network into an
extended K × 1 block vector (whose individual entries are of size N × 1 each):

X̃n|n
∆
=


x̃1,n|n
x̃n,2|n
...

x̃n,K|n

 , where x̃n,k|n
∆
= xn − x̂n,k|n, (1.53)

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 17 — #17 i
i

i
i

i
i

1.2 Distributed Kalman Filtering 17

and introduce supporting block-diagonal and Kronecker product matrices:

Un−1
∆
= 1K ⊗ un−1, (1.54)

Vn
∆
= blkcol{vn,1|n, v2,n|n, . . . , vn,K|n}, (1.55)

Pn|n
∆
= blkdiag{Pn,1|n, Pn,2|n, . . . , Pn,K|n}, (1.56)

Hn
∆
= blkdiag{Hn,1,Hn,2, . . . ,Hn,K}, (1.57)

Sn
∆
= blkdiag{Sn,1,Sn,2, . . . ,Sn,K}, (1.58)

Rn
∆
= blkdiag{Rn,1, Rn,2, . . . , Rn,K}, (1.59)

J
∆
= J ⊗ IN , (1.60)

A
∆
= A ⊗ IN , (1.61)

where ⊗ denotes the Kronecker product operation. Subtracting xn from both sides of
the expression for ψn,k in (1.52), and using zn,` = Hn,`xn + vn,`, gives

ψ̃n,k = x̃n,k|n−1 − Pn,k|n(qn,k − Sn,k x̂n,k|n−1)

= x̃n,k|n−1 − Pn,k|n

∑
`∈Nk

HT
n,`R

−1
n,`

(
zn,` − Hn,` x̂n,k|n−1

)
= (IN − Pn,k|nSn,k)x̃n,k|n−1 − Pn,k|n

∑
`∈Nk

HT
n,`R

−1
n,`vn,`, (1.62)

where ψ̃n,k
∆
= xn − ψn,k. Using the combination step from (1.52) gives

x̃n,k|n =
∑
`∈Nk

a`k

(
(IN − Pn,`|nSn,`)x̃n,`|n−1 − Pn,`|n

∑
i∈N`

HT
n,iR

−1
n,i vn,i

)
. (1.63)

Using x̃n,`|n−1 = Fn−1 x̃n−1,`|n−1 + Gn−1un−1, we arrive at the recursion

x̃n,k|n =
∑
`∈Nk

a`k

(
(IN − Pn,`|nSn,`)Fn−1 x̃n−1,`|n−1

+ (IN − Pn,`|nSn,`)Gn−1un−1 − Pn,`|n

∑
i∈N`

HT
n,iR

−1
n,i vn,i

)
. (1.64)

This relation shows that the network error vector evolves according to the following
dynamics:

X̃n|n = AT(IN − Pn|nSn)(IK ⊗ Fn−1)X̃n−1|n−1

+AT(IKN − Pn|nSn)(IK ⊗ Gn−1)Un−1 −A
TPn|nJ

THT
n R
−1
n Vn, (1.65)

which we rewrite more compactly as

X̃n|n = FnX̃n−1|n−1 + GnUn−1 −DnVn, (1.66)

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 18 — #18 i
i

i
i

i
i

18 CHAPTER 1 Chapter Title

where

Fn
∆
= AT(IKN − Pn|nSn)(IK ⊗ Fn−1), (1.67)

Gn
∆
= AT(IKN − Pn|nSn)(IK ⊗ Gn−1), (1.68)

Dn
∆
= ATPn|nJ

THT
n R
−1
n . (1.69)

If we now let P
X̃,n denote the covariance matrix of the network error vector,

P
X̃,n

∆
= E

[
X̃n|nX̃

T
n|n

]
, (1.70)

it then follows from (1.66) that this matrix satisfies the Lyapunov recursion

P
X̃,n = FnPX̃,n−1F

T
n + Gn(1K1

T
K ⊗ Qn−1)GT

n +DnRnD
T
n . (1.71)

In order to analyze the stability and performance of the diffusion filter, we shall
consider here the following conditions – see [28] for definitions of the notions of
stabilizability and detectability.

Assumption. It is assumed that the model parameters {F,G,Hk,Q, Rk} do not de-
pend on the time index, n. We further collect the measurement matrices in the neigh-
borhood of agent k into the block column matrix:

Hloc
k

∆
= blkcol{Hk1 ,Hk2 , . . . ,Hkdk

}, (1.72)

and assume that the pair (F,GQ1/2) is stabilizable and the pair (F,Hloc
k) is de-

tectable. �

Under the stabilizability and detectability conditions, it is known from the con-
vergence properties of the discrete Riccati recursions that each entry Pn,k|n of Pn|n

converges to the quantity P+
k defined by [28]:(

P+
k
)−1

= (Pk)−1 +
(
Hloc

k
)T(Rloc

k
)−1Hloc

k = (Pk)−1 + Sk, (1.73)

where

Rloc
k

∆
= blkdiag{Rk1 , Rk2 , . . . , Rkdk

}, (1.74)

and Pk is the unique stabilizing solution of the following discrete algebraic Riccati
equation (DARE):

Pk = FP+
k FT + GQGT = FPk FT + GQGT− Kp,k Re,k KT

p,k, (1.75)

where

Kp,k
∆
= FPk

(
Hloc

k
)TR−1

e,k, Re,k
∆
= Rloc

k + Hloc
k Pk

(
Hloc

k
)T
. (1.76)

Accordingly, the quantities {Pn|n,Fn,Gn,Dn} converge to steady-state values denoted

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 19 — #19 i
i

i
i

i
i

1.2 Distributed Kalman Filtering 19

by [12]:

P+ ∆
= lim

n→∞
Pn|n (block diagonal), (1.77)

F
∆
= lim

n→∞
Fn = AT(IKN − P

+S)(IK ⊗ F), (1.78)

G
∆
= lim

n→∞
Gn = AT(IKN − P

+S)(IK ⊗ G), (1.79)

D
∆
= lim

n→∞
Dn = ATP+JTHTR−1, (1.80)

where S,H , and R are written without the time subscript n because their entries are
now time-independent. Furthermore, the stabilizability and detectability conditions
ensure that (see Lemma 1 in [12]):

X
∆
= (IKN − P

+S)(IK ⊗ F) is block diagonal and stable. (1.81)

Note that the limiting matrix F in (1.78) has the form

F = ATX. (1.82)

We will verify soon that, under some conditions, F is also stable for any left-
stochastic matrix A and, in view of Lemma 1 in the Appendix (Section 1.5), the
error covariance matrix P

X̃,n in (1.71) converges to the unique solution of the Lya-
punov equation:

P
X̃

= FP
X̃
F T + G(1K1

T
K ⊗ Q)GT +DRDT. (1.83)

Using the vec notation (which stacks the columns of a matrix on top of each other),
we can solve for P

X̃
and write

vec
(
P
X̃

)
=

(
I(KN)2 − F T ⊗ F

)−1 vec
(
G(1K1

T
K ⊗ Q)GT +DRDT). (1.84)

In this way, the steady-state mean-square error at any agent k will be given by

lim
n→∞
E
[
‖x̃n,k|n‖

2
]

= Tr
(
P
X̃
Ik

)
, (1.85)

where Ik is an K × K block diagonal matrix with blocks of size N × N; it contains
the identity matrix at block (k, k) and zeros everywhere else. That is, it holds that
Ik = ekeT

k ⊗ IN , where ek is the basis column vector of size K × 1 with unit entry at
location k and zeros everywhere else. Consequently, the average mean-square error
across the network is

MSEav =
1
K

Tr
(
P
X̃

)
. (1.86)

We verify the above claims by showing that the matrix F is stable and that, in view of
this fact, the Lyapunov recursion (1.71) converges to the unique solution of the Lya-
punov equation (1.83). These facts follow from the results of two lemmas presented
in the Appendix.

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 20 — #20 i
i

i
i

i
i

20 CHAPTER 1 Chapter Title

1.3 DISTRIBUTED PARTICLE FILTERING
In the second part of this chapter, we discuss distributed particle filtering. We will
focus on consensus-based methods in Subsection 1.3.4 and on diffusion-based meth-
ods in Subsection 1.3.5. Before that, we present the underlying state-space model,
which generalizes (1.2) and (1.3), and we discuss some basics of sequential Bayesian
estimation and review the particle filter. We adopt a Bayesian framework for estima-
tion, which means that both the state xn and the measurements zn,k are modeled as
random vectors [36].

1.3.1 STATE-SPACE MODEL
Differently from Section 1.2, the state-space model is now allowed to be nonlinear.
The temporal dynamics or evolution of the state xn is characterized by the state-
evolution model (a.k.a. state-transition model or system model)

xn+1 = gn(xn,un) , n = 0, 1, . . . , (1.87)

which extends (1.2). In (1.87), gn(· , ·) is a known, generally nonlinear function,
and un is state noise that is statistically independent and identically distributed (iid)
across time n and also statistically independent of the state sequence. The probability
density function (pdf) of un is assumed known. Equation (1.87) then determines the
state-transition pdf f (xn|xn−1) for n = 1, 2,

Furthermore, the statistical dependence of the measurement zn,k of agent k ∈
{1, 2, . . . ,K} on the state xn is characterized by a measurement model

zn,k = hn,k(xn, vn,k) , n = 1, 2, . . . ; k = 1, 2, . . . ,K, (1.88)

which extends (1.3). In (1.88), hn,k(· , ·) is a known, generally nonlinear function,
and vn,k is observation noise that is statistically independent across time n and across
the agents k, and also statistically independent of the state sequence and of the state
noise. The pdf of vn,k is assumed known. Equation (1.88) then determines the local
likelihood function of agent k, f (zn,k |xn), for n = 1, 2, Because vn,k is assumed
independent of vn,k′ for k′ , k, the measurements zn,k at different agents k are con-
ditionally independent given the state xn. Thus, the global (all-agents) likelihood
function f (zn|xn), with zn

∆
= (zT

n,1 zT
n,2 · · · zT

n,K)T, factorizes into the local likelihood
functions, i.e.,

f (zn|xn) =

K∏
k=1

f (zn,k |xn) . (1.89)

The above independence assumptions can be relaxed; for example, the state noise
process un and the observation noise processes vn,k may be allowed to be dependent
[37]. Further, the conditional independence of the observations can be removed too
[38, 39]. Also, the noises in the state and observation equations do not have to be

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 21 — #21 i
i

i
i

i
i

1.3 Distributed Particle Filtering 21

independent across time [40, 41]. However, the independence assumptions stated
above are required for the consensus-based DPF methods presented below. We also
note that the case where the state-evolution function gn(xn,un) is linear in both xn

and un and the measurement function hn,k(xn, vn,k) is linear in both xn and vn was
considered in Section 1.2 (see (1.2) and (1.3)). Furthermore, when the state noise
un in (1.87) and the observation noise vn in (1.88) have Gaussian distributions, these
distributions are completely characterized by their first- and second-order moments.
Finally, we point out that the network may be dynamic in that the set of neighboring
nodes may vary with time (i.e., we may have Nn,k instead of Nk). However, in the
rest of the chapter, we will continue to consider the network to be static.

The above state-evolution and measurement models along with the associated sta-
tistical assumptions imply two further conditional independence properties. First, the
current state xn is conditionally independent of all the past measurements, z1:n−1,k

∆
=

(zT
1,k zT

2,k · · · zT
n−1,k)T, given the previous state xn−1, i.e.,

f (xn|xn−1, z1:n−1,k) = f (xn|xn−1) , (1.90)

for all k = 1, 2, . . . ,K. Second, the current measurements zn,k are conditionally inde-
pendent of all the past measurements, z1:n−1,k′ , given the current state xn, i.e.,

f (zn,k |xn, z1:n−1,k′) = f (zn,k |xn) , (1.91)

for any k′ ∈ {1, 2, . . . ,K}, including in particular k′ = k.

1.3.2 SEQUENTIAL BAYESIAN ESTIMATION
We address the problem of sequential estimation of the state xn from the total (all-
agents) measurement sequence z1:n

∆
= (zT

1 zT
2 · · · zT

n)T. In the Bayesian context, this
essentially amounts to calculating the posterior pdf f (xn|z1:n), from which optimal
Bayesian estimators and quantities characterizing their performance can be derived.
In particular, the MMSE estimator [36] is given by the first moment of f (xn|z1:n),
i.e.,

x̂MMSE
n = E [xn|z1:n] =

∫
RN

xn f (xn|z1:n) dxn , n = 1, 2, (1.92)

In a centralized scenario, based on the conditional independence properties (1.90)
and (1.91), the current posterior pdf f (xn|z1:n) can be calculated sequentially (re-
cursively) from the previous posterior pdf f (xn−1|z1:n−1) and the current all-agents
measurement vector zn. This recursion consists of a prediction step calculating
f (xn|z1:n−1) from f (xn−1|z1:n−1) and a subsequent time-update or correction step cal-
culating f (xn|z1:n) from f (xn|z1:n−1). The prediction step involves the state-transition
pdf f (xn|xn−1), and the update step involves the global likelihood function f (zn|xn)
and, thus, the all-agents measurement vector zn. Unfortunately, the prediction and
update steps as well as the calculation of the MMSE estimate in (1.92) are usually
computationally infeasible. A prominent exception is the case of the linear-Gaussian

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 22 — #22 i
i

i
i

i
i

22 CHAPTER 1 Chapter Title

state-space model, where optimal sequential Bayesian state estimation reduces to the
Kalman filter considered in Subsection 1.2.3 [19, 28, 29].

Several computationally feasible approximations to optimal sequential Bayesian
state estimation have been proposed in the centralized case; these include the ex-
tended Kalman filter [19, 42, 36], the Gaussian sum filter [43], the unscented (sigma-
point) Kalman filter [44, 45], the cubature Kalman filter [46], and the particle filter
[47, 20, 48, 49]. In particular, particle filters are well suited to any nonlinear state-
space model and any distributions of the state and observation noises, and they per-
form well in situations where Kalman filter-based methods perform poorly. This gen-
erally comes at the cost of an increased computational complexity. Below, we will
discuss distributed methods for particle filtering in decentralized agent networks. We
start with a review of the basic particle filter.

1.3.3 REVIEW OF THE PARTICLE FILTER
A particle filter (PF) performs an approximation of optimal sequential Bayesian state
estimation that is based on Monte Carlo simulation and importance sampling [47,
20, 48, 49]. In a centralized scenario, the posterior pdf f (xn|z1:n) is represented
in an approximative manner by M randomly drawn samples or particles x(m)

n and
corresponding weights w(m)

n , where m = 1, 2, . . . ,M. Specifically, at each time step
n, propagation of the posterior pdf (i.e., f (xn−1|z1:n−1)→ f (xn|z1:n)) is replaced by
propagation of the particles and weights (i.e.,

{(
x(m)

n−1,w
(m)
n−1

)}M
m=1 →

{(
x(m)

n ,w(m)
n

)}M
m=1).

As in the case of optimal sequential Bayesian estimation considered in Subsection
1.3.2, this propagation consists of a prediction step and an update or correction step.

In the prediction step at time n, for each preceding particle x(m)
n−1, a new par-

ticle x(m)
n is sampled from a suitably chosen proposal pdf (a.k.a. importance pdf)

q(xn|x(m)
n−1). In the simplest case, q(xn|x(m)

n−1) is chosen as f (xn|x(m)
n−1), i.e., the state-

transition pdf f (xn|xn−1) conditioned on xn−1 = x(m)
n−1; the resulting PF algorithm is

known as the sequential importance resampling (SIR) filter. However, more sophis-
ticated “adapted” proposal pdfs that also involve the current measurement zn can
result in improved estimation performance [49, 50] (see Subsection 1.3.4.7).

In the update step at time n, for each particle x(m)
n , a nonnormalized weight is

calculated according to

w̃(m)
n = w(m)

n−1

f (zn|x(m)
n) f (x(m)

n |x
(m)
n−1)

q(x(m)
n |x

(m)
n−1)

, m = 1, 2, . . . ,M . (1.93)

For the SIR filter, this simplifies to

w̃(m)
n = w(m)

n−1 f (zn|x(m)
n) , m = 1, 2, . . . ,M . (1.94)

Subsequently, the weights are normalized according to w(m)
n = w̃(m)

n /
∑M

m′=1 w̃(m′)
n . The

set of particles and normalized weights
{(

x(m)
n ,w(m)

n
)}M

m=1 constitutes a Monte Carlo
representation of the posterior pdf f (xn|z1:n). From

{(
x(m)

n ,w(m)
n

)}M
m=1, a corresponding

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 23 — #23 i
i

i
i

i
i

1.3 Distributed Particle Filtering 23

approximation of the MMSE state estimate x̂MMSE
n in (1.92) can be computed as the

weighted sample mean, i.e.,

x̂n =

M∑
m=1

w(m)
n x(m)

n . (1.95)

Finally, if a suitable criterion is satisfied (as discussed in [51, 20]), the set{(
x(m)

n ,w(m)
n

)}M
m=1 is resampled to avoid an effect known as particle degeneracy. In the

simplest case [51], the resampled particles are obtained by sampling with replace-
ment from the set

{(
x(m)

n ,w(m)
n

)}M
m=1, where x(m)

n is sampled with probability w(m)
n . This

results in M resampled particles x(m)
n . The weights are redefined as w(m)

n = 1/M.
This recursive algorithm is initialized at time n=0 by M particles x(m)

0 , m =

1, 2, . . . ,M, which are drawn from a suitable prior pdf f (x0). The initial weights
are equal, i.e., w(m)

0 = 1/M for all m.
In a distributed implementation based on a decentralized network of agents, each

agent runs a local instance of a PF, hereafter briefly referred to as “local PF.” The
local PF at agent k observes only the local measurements zn,k directly; however, it
receives from the neighbor agents indirect information about the measurements of
the other agents in the network and also provides to the neighboring agents indirect
information about its own measurements. The type of information that is exchanged
between neighboring agents depends on the specific method used for distributed par-
ticle filtering. A distributed PF (DPF) is based on the PF algorithm summarized
above. However, it modifies that algorithm to account for the fact that each agent
runs its own local PF, and it employs some networkwide distributed scheme (such
as consensus, gossip, or diffusion) to disseminate and fuse local information pro-
vided by the agents. Several types of DPF methods have been proposed, including
[17, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65]. In what follows, we dis-
cuss two classes of DPF methods that rely on consensus and diffusion schemes for
distributed information dissemination and fusion.

1.3.4 CONSENSUS-BASED METHODS
In a DPF that emulates the performance of the basic PF, the local PF at agent k
attempts to track a particle representation

{(
x(m)

n,k ,w
(m)
n,k

)}M
m=1 of the global posterior pdf

f (xn|z1:n). According to (1.93), this requires the global likelihood function (GLF)
f (zn|xn) (evaluated at the current local particles, i.e., xn = x(m)

n,k), rather than merely
the local likelihood function (LLF) of agent k, f (zn,k |xn). Because agent k by itself is
only able to calculate the LLF, calculation of the GLF requires information provided
by the other agents.

1.3.4.1 DPF Based on Likelihood Consensus

A recently proposed class of DPF algorithms performs a distributed calculation of the
GLF using the likelihood consensus (LC) scheme [56, 57]. To develop that scheme,

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 24 — #24 i
i

i
i

i
i

24 CHAPTER 1 Chapter Title

we first take the logarithm of (1.89), which yields

ln f (zn|xn) =

K∑
k=1

ln f (zn,k |xn) , (1.96)

where ln denotes the natural logarithm. We can thus write the GLF as

f (zn|xn) = exp
(

ln f (zn|xn)
)

= exp
(
Kλ(xn; zn)

)
, (1.97)

with

λ(xn; zn) ∆
=

1
K

ln f (zn|xn) =
1
K

K∑
k=1

ln f (zn,k |xn) , (1.98)

where (1.96) has been used in the last step. Hence, the GLF f (zn|xn) has been rewrit-
ten in terms of the the average of the K log-LLFs ln f (zn,k |xn), k = 1, 2, . . . ,K. Be-
cause the log-LLFs ln f (zn,k |xn) are functions of the unknown state xn ∈ R

N, rather
than simply numbers, we cannot directly use a distributed averaging scheme such as
the average consensus algorithm to calculate λ(xn; zn).

The solution provided by the LC scheme is based on an approximate (finite-
order) function expansion of the log-LLFs ln f (zn,k |xn). Let {ϕr(xn)}Rr=1 denote a
system of R functions that is known to all agents. Possible choices of these functions
include monomials [56], orthogonal polynomials [66], Fourier basis functions [57],
and spline functions [67]. We consider the approximations of the log-LLFs given by

ln f (zn,k |xn) ≈
R∑

r=1

αn,k,r(zn,k)ϕr(xn) , k = 1, 2, . . . ,K, (1.99)

with suitable expansion coefficients αn,k,r(zn,k), r = 1, 2, . . . ,R. Note that these ex-
pansion coefficients involve the local measurements zn,k, and thus they are different at
different agents k. Inserting (1.99) into (1.98) and changing the order of summation
yields

λ(xn; zn) ≈ λ̃(xn; zn) ∆
=

R∑
r=1

an,r(zn)ϕr(xn), (1.100)

where

an,r(zn) ∆
=

1
K

K∑
k=1

αn,k,r(zn,k). (1.101)

Using in (1.97) the approximation λ̃(xn; zn) instead of λ(xn; zn), we obtain a corre-
sponding approximation of the GLF, namely,

f (zn|xn) ≈ f̃ (zn|xn) ∆
= exp

(
Kλ̃(xn; zn)

)
. (1.102)

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 25 — #25 i
i

i
i

i
i

1.3 Distributed Particle Filtering 25

1.3.4.2 Distributed Calculation of the GLF

Within the approximation given by (1.100) and (1.102), the distributed calculation of
the GLF f (zn|xn) at time n amounts to the distributed calculation of the R numbers
an,r(zn), r = 1, 2, . . . ,R, each of which is an average of the respective local expan-
sion coefficients αn,k,r(zn,k), k = 1, 2, . . . ,K. Note that because the measurements zn,k

have been observed and thus are fixed, we now have to average numbers instead of
functions. Thus, the average expansion coefficients an,r(zn), r = 1, 2, . . . ,R can be
calculated in a distributed manner via R instances of an average consensus algorithm
[24, 25]. In addition (see (1.102)), each agent also needs to know the total number
of agents, K. Distributed algorithms for counting the number of agents are available
(e.g., [68]).

In iteration i of the rth instance of the average consensus algorithm, which is used
to calculate an,r(zn), each agent k updates an “internal state” ζk,r according to

ζ(i)
k,r =

∑
k′∈Nk

ω(i)
k,k′ ζ

(i−1)
k′,r . (1.103)

Here,
{
ω(i)

k,k′
}
k′∈Nk

is a set of weights whose choice is discussed in [24, 69, 25]. Hence,
ζ(i)

k,r is a linear combination of the preceding (i.e., at iteration i − 1) internal state of
agent k and the preceding internal states of the neighbor agents k′. The iteration
is initialized by choosing the initial internal states as ζ(0)

k,r = αn,k,r(zn,k). Then, for a
suitable choice of the weights, and using our assumption that the agent network is
connected, it can be shown [25] that the internal state ζ(i)

k,r of each agent k converges
to the desired average an,r(zn), i.e.,

lim
i→∞

ζ(i)
k,r = an,r(zn) =

1
K

K∑
k′=1

αn,k′,r(zn,k′) . (1.104)

For a finite number imax of iterations, complete convergence cannot be achieved; this
means that the internal states ζ(imax)

k,r will be (slightly) different from an,r(zn), and also
(slightly) different across the agents k.

Several standard choices of the weights ω(i)
k,k′ are available [69, 24]. A popular

choice is given by the Metropolis weights [24]

ωk,k′ =


1

max{|Nk |, |Nk′ |}
, k′, k ,

1−
∑

k′′∈Nk\{k}ωk,k′′ , k′= k .
(1.105)

Note that these weights do not depend on the iteration index i. Their calculation at
agent k requires that agent k knows both |Nk | and |Nk′ | for all k′∈Nk. Certain other
choices of the weights require less knowledge [24].

In each iteration of the consensus scheme, agent k has to broadcast its internal
states ζ(i)

k,r, r = 1, 2, . . . ,R to its neighbors k′∈Nk\{k}. Furthermore, agent k receives
the internal states ζ(i)

k′,r, r = 1, 2, . . . ,R from its neighbors k′∈Nk\{k}. Thus, during
one time step n, each agent k has to broadcast a total of imaxR real numbers to its

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 26 — #26 i
i

i
i

i
i

26 CHAPTER 1 Chapter Title

neighbors.

1.3.4.3 Calculation of the Local Expansion Coefficients

The local expansion coefficients αn,k,r(zn,k), r = 1, 2, . . . ,R arising in the log-LLF
approximation (1.99) are calculated locally at the respective agent k. This can be
done by means of a least-squares (LS) fit between the log-LLF ln f (zn,k |xn) and the
approximating expansion

∑R
r=1 αn,k,r(zn,k)ϕr(xn). In view of the way the local PF

operates, the approximation does not need to be good for all possible states xn but
only in those regions of the state space where the current particles x(m)

n,k are located.
Therefore, the LS fit at agent k minimizes, with respect to the vector of expansion
coefficients αn,k

∆
=

(
αn,k,1(zn,k) · · · αn,k,R(zn,k)

)T, the LS approximation error of the ex-
pansion (1.99) evaluated at the particles x(m)

n,k , m = 1, 2, . . . ,M, i.e.,

M∑
m=1

(
ln f

(
zn,k |x(m)

n,k
)
−

R∑
r=1

αn,k,r(zn,k)ϕr
(
x(m)

n,k
))2

= ‖ξn,k −Φn,kαn,k‖
2 → min

αn,k
.

(1.106)
Here, ξn,k

∆
=

(
ln f

(
zn,k |x(1)

n,k
)
· · · ln f

(
zn,k |x(M)

n,k
))T

and Φn,k is an M× R matrix with

columns φn,k,r
∆
=

(
ϕr

(
x(1)

n,k
)
· · · ϕr

(
x(M)

n,k
))T

. Assuming that M ≥ R (i.e., there are at
least as many particles as expansion coefficients) and that Φn,k has full rank, the
solution to the LS problem (1.106) is given by [70]

α̂n,k = Φ#
n,k ξn,k , with Φ#

n,k
∆
=

(
ΦT

n,kΦn,k
)−1
ΦT

n,k . (1.107)

Numerical aspects of computing α̂n,k in (1.107) are discussed in [70, 71]. The ele-
ments α̂n,k,r of α̂n,k are then used to initialize the LC according to ζ(0)

k,r = α̂n,k,r.
A summary of the LC-based DPF algorithm is provided in listing (1.108).

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 27 — #27 i
i

i
i

i
i

1.3 Distributed Particle Filtering 27

LC-based DPF

each agent starts with its own set of particles x(m)
0,k ∼ f (x0) and identical weights

w(m)
0,k =1/M, where m =1, 2, . . . ,M.

repeat at every agent k for n≥1:

(propose a new set of particles)

x(m)
n,k ∼ q(xn |x(m)

n−1,k) , m =1, 2, . . . ,M

(calculate an approximation f̃k(zn |xn) of the GLF f (zn |xn))
• calculate the coefficient vector α̂n,k according to (1.107)
• for r = 1, 2, . . . ,R:
− initialize the internal LC state: ζ(0)

k,r = α̂n,k,r

− for i = 1, 2, . . . , imax, update the internal LC state ζ(i)
k,r according to (1.103)

− calculate f̃k(zn |xn) = exp
(
K

∑R
r=1 ζ

(imax)
k,r ϕr(xn)

)
(cf. (1.102), (1.100))

(calculate the weights of the proposed particles)
• calculate nonnormalized weights:

w̃(m)
n,k = w(m)

n−1,k

f̃k(zn |x
(m)
n,k) f (x(m)

n,k |x
(m)
n−1,k)

q(x(m)
n,k |x

(m)
n−1,k)

, m =1, 2, . . . ,M

• normalize weights:

w(m)
n = w̃(m)

n /
∑M

m′=1 w̃(m′)
n

(compute the state estimate)

x̂n,k =
∑M

m=1 w(m)
n,k x(m)

n,k

(if necessary, perform resampling [51, 20])
end

(1.108)

1.3.4.4 Exponential Family

An alternative LC scheme is possible if the LLFs of all the agents k (viewed as
conditional pdfs of zn,k) belong to the exponential family of distributions [72], i.e.,

f (zn,k |xn) = cn,k(zn,k) exp
(
bT

n,k(xn) dn,k(zn,k) − gn,k(xn)
)
, k = 1, 2, . . . ,K, (1.109)

with some functions cn,k(·)∈R+, bn,k(·)∈Rq, dn,k(·)∈Rq, and gn,k(·)∈R, where q ≥ N.
Inserting this expression into (1.89) yields for the GLF

f (zn|xn) = Cn(zn) exp
(
KGn(xn; zn)

)
, (1.110)

where Cn(zn) ∆
=

∏K
k=1 cn,k(zn,k) and

Gn(xn; zn) ∆
=

1
K

K∑
k=1

(
bT

n,k(xn) dn,k(zn,k) − gn,k(xn)
)
. (1.111)

The normalization factor Cn(zn) does not depend on the state xn and is hence irrele-
vant due to weight normalization (see Subsection 1.3.3).

As an alternative to expanding the log-LLFs as in (1.99), we may use separate

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 28 — #28 i
i

i
i

i
i

28 CHAPTER 1 Chapter Title

finite-order function expansions of the state-dependent functions involved in (1.111)
[56], i.e.,

bn,k(xn) ≈
Rb∑

r=1

βn,k,r ϕr(xn) , gn,k(xn) ≈
Rg∑

r=1

γn,k,r ψr(xn) , k = 1, 2, . . . ,K.

(1.112)
Here, the coefficients βn,k,r are vectors of the same dimension as bn,k(xn). The coef-
ficients βn,k,r and γn,k,r can again be calculated by means of LS fitting, similarly to
Subsection 1.3.4.3; note that one separate LS fit is required for each component of
βn,k,r . Inserting (1.112) into (1.111) and changing the order of summation yields

Gn(xn; zn) ≈ G̃n(xn; zn) ∆
=

Rb∑
r=1

Bn,r(zn)ϕr(xn) −
Rg∑

r=1

Γn,rψr(xn) , (1.113)

with

Bn,r(zn) ∆
=

1
K

K∑
k=1

βT
n,k,r dn,k(zn,k) , Γn,r

∆
=

1
K

K∑
k=1

γn,k,r . (1.114)

Using in (1.110) the approximation G̃n(xn; zn) instead of Gn(xn; zn) yields an approx-
imation of the GLF.

The Rb numbers Bn,r(zk), r = 1, 2, . . . ,Rb and the Rg numbers Γn,r , r = 1, 2, . . . ,Rg

are seen in (1.114) to be averages of the local quantities an,k,r(zn,k) ∆
= βT

n,k,r dn,k(zn,k)
and γn,k,r , respectively. Hence, they can be calculated in a distributed manner via
Rb+ Rg instances of an average consensus algorithm, similarly to Subsection 1.3.4.2.
Note that this distributed calculation assumes that each agent k knows its own func-
tions bn,k(·), dn,k(·), and gn,k(·), but not the respective functions of the other agents
k′,k.

This distributed calculation of (an approximation of) the GLF f (zn|xn) may be
preferable over the general scheme presented in Subsections 1.3.4.1–1.3.4.3 if it is
easier to approximate the functions bn,k(xn) and gn,k(xn) than the LLFs ln f (zn,k |xn).
In particular, there is a reduction in the number of real numbers each agent has to
broadcast to its neighbors if Rb + Rg < R, where R is the order of function expansion
used in the general scheme.

1.3.4.5 Gaussian Observation Noise

An important special case of an exponential-family LLF arises with additive Gaus-
sian observation noise [56]. Here, the measurement model of agent k in (1.88) is
specialized according to

zn,k = mn,k(xn) + vn,k , n = 1, 2, . . . ; k = 1, 2, . . . ,K, (1.115)

where mn,k(xn) is a generally nonlinear function and the additive observation noise
vn,k satisfies the independence properties formulated in Section 1.3.1 and, in addition,
is Gaussian with zero mean and covariance matrix Cn,k . It follows that the LLF of

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 29 — #29 i
i

i
i

i
i

1.3 Distributed Particle Filtering 29

agent k is given, up to a normalization factor, by

f (zn,k |xn) ∝ exp
(
−

1
2
(
zn,k−mn,k(xn)

)T C−1
n,k

(
zn,k−mn,k(xn)

))
. (1.116)

This is easily verified to be an exponential-family LLF (1.109) with

bn,k(xn) = mn,k(xn) , (1.117)

dn,k(zn,k) = C−1
n,k zn,k , (1.118)

gn,k(xn) =
1
2

mT
n,k(xn)C−1

n,k mn,k(xn) . (1.119)

As in Subsection 1.3.4.4, we may use separate function expansion approxima-
tions of bn,k(xn) = mn,k(xn) and gn,k(xn). However, an alternative approach is possi-
ble because according to (1.119), gn,k(xn) is a function of mn,k(xn) [56]. Indeed, we
may insert a function expansion approximation of bn,k(xn) = mn,k(xn), i.e.,

mn,k(xn) ≈ m̃n,k(xn) ∆
=

Rb∑
r=1

βn,k,r ϕr(xn) , (1.120)

into (1.119) to obtain an “induced” function expansion approximation of gn,k(xn),

gn,k(xn) ≈ g̃n,k(xn) ∆
=

1
2

m̃T
n,k(xn)C−1

n,k m̃n,k(xn)

=
1
2

Rb∑
r1=1

Rb∑
r2=1

βT
n,k,r1

C−1
n,k βn,k,r2 ϕr1 (xn)ϕr2 (xn) . (1.121)

Using any one-to-one mapping of the double index (r1, r2) ∈ {1, 2, . . . ,Rb} ×

{1, 2, . . . ,Rb} to a single index r ∈ {1, 2, . . . ,Rg}, with Rg =R2
b, we can rewrite (1.121)

as (cf. (1.112))

g̃n,k(xn) =

Rg∑
r=1

γn,k,r ψr(xn) , (1.122)

where γn,k,r = 1
2 β

T
n,k,r1

C−1
n,k βn,k,r2 and ψr(xn) = ϕr1 (xn)ϕr2 (xn). It can be easily ver-

ified that the resulting approximate GLF (cf. (1.89)) can be written as f̃ (zk |xk) ∝
exp

(
− 1

2 Q̃n(zn, xn)
)

with Q̃n(zn, xn) ∆
=

∑K
k=1

(
zn,k − m̃n,k(xn)

)TC−1
n,k

(
zn,k − m̃n,k(xn)

)
.

This equals the true GLF f (zk |xk), except that the means mn,k(xn) are replaced by
their approximations m̃n,k(xn).

1.3.4.6 Distributed Gaussian Particle Filter

The Gaussian PF (GPF) [73] uses a Gaussian approximation of the posterior pdf
f (xn|z1:n). This Gaussian approximation is derived from a weighted particle set,
which is calculated in a similar way as in the PF except that no resampling is re-
quired. Note that the measurement model is still allowed to be non-Gaussian, as in
(1.88).

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 30 — #30 i
i

i
i

i
i

30 CHAPTER 1 Chapter Title

In a distributed GPF, the local GPF at agent k propagates a Gaussian approx-
imation N(xn;µn,k,Σn,k) of the global posterior pdf f (xn|z1:n). At time n, parti-
cles x(m)

n,k , m = 1, 2, . . . ,M are drawn from the preceding Gaussian approximation
N(xn−1;µn−1,k,Σn−1,k). Then, the prediction and update steps are performed as de-
scribed in Section 1.3.3. From the resulting weighted particles

{(
x(m)

n,k ,w
(m)
n,k

)}M
m=1, a

new Gaussian approximation N(xn;µn,k,Σn,k) is determined according to

µn,k =

m∑
m=1

w(m)
n,k x(m)

n,k and Σn,k =

M∑
m=1

w(m)
n,k x(m)

n,k x(m)T
n,k − µn,kµ

T
n,k . (1.123)

The weighted sample mean µn,k also constitutes the local approximation x̂n,k of the
MMSE state estimate x̂MMSE

n in (1.92), i.e., x̂n,k = µn,k .
Just as in the conventional DPF (cf. (1.93)), the update step of the local GPFs

requires the GLF evaluated at the current local particles, i.e., f (zn|xn) for xn = x(m)
n,k ,

m = 1, 2, . . . ,M. An approximation of f
(
zn|x(m)

n,k
)

can be calculated in a distributed
manner by the LC as explained earlier. However, the following variation yields a
significant reduction of computational complexity at the cost of some increase in lo-
cal communications [56]. Inspired by the parallel GPF implementation proposed in
[74], the idea is to “distribute” the M particles over the K agents, such that each local
GPF uses a significantly reduced set of particles, and to combine the results of the
local GPFs via additional average consensus operations. The local GPF at agent k
uses only Mk<M particles, where

∑K
k=1 Mk = M. In the local weight update step at

agent k, for each particle x(m)
n,k from the reduced local particle set, m ∈ {1, 2, . . . ,Mk},

a nonnormalized weight w̃(m)
n,k is calculated according to (1.93). This requires the

GLF evaluated at the Mk particles, i.e., f
(
zn|x(m)

n,k
)
, m = 1, 2, . . . ,Mk, which was pre-

viously calculated (approximately) by the LC. Furthermore, the sum of the resulting
nonnormalized weights is calculated, i.e., W̃n,k =

∑Mk
m=1 w̃(m)

n,k .
Next, from the weighted particles

{(
x(m)

n,k , w̃
(m)
n,k

)}Mk
m=1, a local nonnormalized mean

vector and a local nonnormalized correlation matrix are calculated at each agent k as

µ′n,k =

Mk∑
m=1

w̃(m)
n,k x(m)

n,k , R′n,k =

Mk∑
m=1

w̃(m)
n,k x(m)

n,k x(m)T
n,k . (1.124)

Finally, the local means and correlations from all the agents are combined into a
global mean and covariance:

µ̄n,k =
1

Wn,k

K∑
k=1

µ′n,k , Σ̄n,k =
1

Wn,k

K∑
k=1

R′n,k − µ̄n,k µ̄
T
n,k , (1.125)

where Wn,k
∆
=

∑K
k=1W̃n,k. Approximations of the sums

∑K
k=1 µ

′
n,k,

∑K
k=1R′n,k, and∑K

k=1W̃n,k can be calculated in a distributed manner by means of an average con-
sensus algorithm (again assuming that the number of agents, K, is known to each
agent). Subsequently, the division by Wn,k and the subtraction of µ̄n,k µ̄

T
n,k in (1.125)

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 31 — #31 i
i

i
i

i
i

1.3 Distributed Particle Filtering 31

are performed locally at each agent. This results in local approximations µn,k and
Σn,k of, respectively, µ̄n,k and Σ̄n,k at each agent k. The state estimate at agent k, x̂n,k,
is taken to be µn,k.

1.3.4.7 Distributed Proposal Adaptation

The choice of the proposal pdf q(xn; x(m)
n−1) used in the weight update step (1.93)

strongly affects the performance of a PF. The proposal pdf should be similar to the
posterior pdf f (xn|z1:n) [20]. Using the state-transition pdf f (xn|x(m)

n−1) as proposal
pdf, as is done in the SIR filter, does not cater to this goal; in particular, it does not
take into account the current measurement zn. The design of a proposal pdf taking
into account the measurements is known as proposal adaptation [49, 50]. In a DPF,
the proposal pdfs used by the local PFs should be adapted to the total (all-agents)
measurement zn = (zT

n,1 zT
n,2 · · · zT

n,K)T.
A distributed method for this type of “global” proposal adaptation can again

be based on the average consensus principle [57]. In this method, each agent first
calculates a “predistorted” local posterior pdf. A Gaussian approximation of the
global posterior pdf is then obtained by fusing all the predistorted local posterior
pdfs; this approximate global posterior pdf is used by the local PFs as a proposal
pdf. The method is inspired by [52] but employs a different predistortion that en-
ables the use of a Gaussian filter for calculating the predistorted local posterior
pdfs. To derive the method, we note that the global posterior pdf can be developed
as f (xn|z1:n) = f (xn|z1:n−1, zn) ∝ f (zn|xn, z1:n−1) f (xn|z1:n−1) = f (zn|xn) f (xn|z1:n−1),
where Bayes’ rule and (1.91) have been used. Inserting (1.89), we further obtain

f (xn|z1:n) ∝
(K∏

k=1

f (zn,k |xn)
)

f (xn|z1:n−1) . (1.126)

We now define a predistorted, nonnormalized “local pseudoposterior pdf” at
agent k as

f̃ (xn|z1:n−1, zn,k) ∆
= f (zn,k |xn)

(
f (xn|z1:n−1)

)1/K
. (1.127)

Furthermore, we consider the network-wide product of all the local pseudoposterior
pdfs,

K∏
k=1

f̃ (xn|z1:n−1, zn,k) =

(K∏
k=1

f (zn,k |xn)
)

f (xn|z1:n−1) ∝ f (xn|z1:n) , (1.128)

where (1.126) has been used in the last step. According to (1.128), the product of
all the local pseudoposterior pdfs equals the global posterior pdf up to a factor. This
fact can be used to calculate a Gaussian approximation of the global posterior pdf
f (xn|z1:n)—note that f (xn|z1:n) involves all the measurements and in fact would be
the optimal proposal pdf—by a distributed evaluation of the leftmost side of (1.128).
To make this possible, we use Gaussian approximations of the local pseudoposterior
pdfs, i.e.,

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 32 — #32 i
i

i
i

i
i

32 CHAPTER 1 Chapter Title

f̃ (xn|z1:n−1, zn,k) ≈ N(xn; µ̃n,k, Σ̃n,k) , (1.129)

and of the global posterior pdf, i.e.,

f (xn|z1:n) ≈ q(xn; zk) ∆
= N(xn;µn,Σn) . (1.130)

Note that (1.130) also defines the global proposal pdf q(xn; zn). Inserting the approx-
imations (1.129) and (1.130) into the factorization f (xn|z1:n) ∝

∏K
k=1 f̃ (xn|z1:n−1, zn,k)

(see (1.128)) yields

N(xn;µn,Σn) ∝
K∏

k=1

N(xn; µ̃n,k, Σ̃n,k) . (1.131)

Using this relation and the rules for a product of Gaussian densities [52, 75], the
global mean µn and global covarianceΣn—which determine q(xn; zn) =N(xn;µn,Σn)
—can be calculated from the local means µ̃n,k and local covariances Σ̃n,k according
to

µn = Σn

K∑
k=1

(
Σ̃n,k

)−1 µ̃n,k , Σn =

(K∑
k=1

(
Σ̃n,k

)−1
)−1

. (1.132)

Here, the sums
∑K

k=1
(
Σ̃n,k

)−1 µ̃n,k and
∑K

k=1
(
Σ̃n,k

)−1 can be computed in a distributed
manner by means of an average consensus algorithm.

The calculation of the local mean µ̃n,k and local covariance Σ̃n,k , as defined in
(1.129), at agent k is based on the observation that (1.127) can be interpreted as
the update step of a Bayesian filter using the predistorted predicted posterior pdf(
f (xn|z1:n−1)

)1/K instead of the true predicted posterior pdf f (xn|z1:n−1). Each agent
first calculates a Gaussian approximation of the predicted posterior pdf,

f (xn|z1:n−1) ≈ N(xn;µ′n,k,Σ
′
n,k) , (1.133)

where µ′n,k = 1
M

∑M
m=1 x(m)′

n,k and Σ′n,k = 1
M

∑M
m=1 x(m)′

n,k
(
x(m)′

n,k
)T
− µ′n,k

(
µ′n,k

)T. Here,{
x(m)′

n,k
}M
m=1 is a set of temporary particles that are randomly drawn from f (xn|x(m)

n−1,k),
where

{
x(m)

n−1,k
}M
m=1 is the set of particles resulting from the preceding filtering step at

time n−1. The approximation (1.133) implies(
f (xn|z1:n−1)

)1/K
≈ N(xn;µ′n,k,KΣ

′
n,k) . (1.134)

Using the Gaussian approximations (1.129) and (1.134) in (1.127) gives

N(xk; µ̃n,k, Σ̃n,k) = f (zn,k |xk)N(xk;µ′n,k,KΣ
′
n,k) . (1.135)

This can be calculated by the update step of a Gaussian filter with input mean µ′n,k,
input covariance KΣ′n,k, and measurement zn,k. This Gaussian filter update step is
performed locally at each agent and produces µ̃n,k and Σ̃n,k . Examples of a Gaussian
filter include the extended Kalman filter [19, 42, 36], the unscented Kalman filter
[44, 45], the cubature Kalman filter [46], and the filters described in [76].

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 33 — #33 i
i

i
i

i
i

1.3 Distributed Particle Filtering 33

1.3.5 DIFFUSION-BASED METHODS
In this subsection, we address diffusion cooperation among agents as in Subsection
1.2.7 but implemented with particle filtering [61]. However, now the considered
state-space models are nonlinear and the pdfs of un in (1.87) and vn,k in (1.88) are
assumed to be known up to proportionality constants. We reiterate that these pdfs
can be of any form.

The diffusion-based DPF presented here follows the spirit of cooperation from
Subsection 1.2.7 in the sense that the agents share moments (or parameters of ap-
proximating distributions) of the unknown state. We assume that the agents at time
n = 0 start with the generation of their own particles x(m)

0,k , m = 1, 2, . . . ,M, which are
drawn from a prior pdf f (x0), i.e.,

x(m)
0,k ∼ f (x0), m = 1, 2, . . . ,M; k = 1, 2, . . . ,K. (1.136)

Thus, before the tracking of the state starts, each agent has a representation of the
prior pdf of x0 given by

{
x(m)

0,k ,w
(m)
0,k = 1

M

}M

m=1
. Similarly, before processing the mea-

surement vector zn,k, the local PF of agent k has a representation of the posterior pdf

of xn−1,k given by
{
x(m)

n−1,k,w
(m)
n−1,k = 1

M

}M

m=1
, which serves as a prior for the state xn.

Next, we explain how we obtain
{
x(m)

n,k ,w
(m)
n,k = 1

M

}M

m=1
from

{
x(m)

n−1,k,w
(m)
n−1,k = 1

M

}M

m=1
.

The PF of each agent k propagates the particles x(m)
n−1,k to particles that represent pos-

sible values of the state at time n. The propagation is carried out by drawing samples
from the importance pdf q(xn|x(m)

n−1,k), i.e.,

x̃(m)
n,k ∼ q(xn|x(m)

n−1,k), m = 1, 2, . . . ,M; k = 1, 2, . . . ,K. (1.137)

As described in Subsection 1.3.3, the PF subsequently computes the weights of these
particles. This is accomplished by

w̃(m)
n,k ∝

f (zn,k |x̃(m)
n,k) f (x̃(m)

n,k |x
(m)
n−1,k)

q(x̃(m)
n,k |x

(m)
n−1,k)

, (1.138)

where
∑M

m=1 w̃(m)
n,k = 1. With the particles x̃(m)

n,k and their weights w̃(m)
n,k , the agent k

has a local approximation of the posterior pdf of xn given by
{
x̃(m)

n,k , w̃
(m)
n,k

}M

m=1
. The

cooperation among the agents requires that they exchange these approximating local
posterior pdfs and fuse them to form new local posteriors. The best approach in terms
of accuracy would be that each agent broadcasts all the particles and weights to its
neighbors, but that would be quite costly in terms of communication load because the
number of particles and weights is usually large. An alternative is to use the particles
and weights to construct a parametric distribution, that is, estimate the parameters of
an approximating distribution of the weighted particles. Then, the agents would only
exchange the parameters of the approximating distribution.

In the sequel, the approximating distributions are multivariate Gaussians. Thus,
the agents proceed by computing the means and covariance matrices of the approxi-

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 34 — #34 i
i

i
i

i
i

34 CHAPTER 1 Chapter Title

mating Gaussians. First, the agents obtain the means by

µ̃n,k =

M∑
m=1

w̃(m)
n,k x̃(m)

n,k , k = 1, 2, . . . ,K, (1.139)

and then the covariance matrices by

Σ̃n,k =

M∑
m=1

w̃(m)
n,k

(
x̃(m)

n,k − µ̃n,k

) (
x̃(m)

n,k − µ̃n,k

)T
, k = 1, 2, . . . ,K. (1.140)

In the next step, the agents exchange the means and covariance matrices with their
neighbors and follow up with merging all the Gaussian posteriors into one Gaussian.
To that end, the agents use coefficients a`k that quantify how much they trust their
neighbors (defined earlier in Subsection 1.2.1, and here with a`k representing how
much agent k trusts agent `). We note that

∑
`∈Nk

a`k = 1. In the chapter on Bayesian
Approach to Inference from this book (see its Subsection 1.2.3), it is explained that
the Gaussian after merging has a covariance matrix and mean that can be expressed
in terms of the individual covariance matrices and means of the agents by

Σn,k =

∑
`∈Nk

a`k
(
Σ̃n,k

)−1
−1

(1.141)

and

µn,k = Σn,k

∑
`∈Nk

a`k
(
Σ̃n,k

)−1
µ̃n,k

 , (1.142)

respectively. More specifically, this choice of µn,k and Σn,k minimizes the weighted
sum of Kullback-Leibler distances

∑
`∈Nk

a`kD
(
Nn,k ‖Ñn,`

)
, where Nn,k is the result-

ing Gaussian after merging, and Ñn,`, ` ∈ Nk are the Gaussians of agent k and its
neighbors.

At this point, the agents have more than one way of proceeding. A simple way is
that the agents use the newly obtained Gaussian and that each draws a set of particles
that represent it, i.e.,

x(m)
n,k ∼ N(xn;µn,k,Σn,k), m = 1, 2, . . . ,M; k = 1, 2, . . . ,K. (1.143)

After generation of these particles, the agents have a discrete representation,{
x(m)

n,k ,w
(m)
n,k = 1

M

}M

m=1
, of the posterior pdf at time n that serves as a prior pdf of

xn+1.
Another approach would be to avoid fusion of the local posteriors by (1.141)

and (1.142) and instead draw particles directly from the mixture of Gaussians with
components Ñ(xn; µ̃n,`, Σ̃n,`) and weights a`k, i.e.,

x(m)
n,k ∼

∑
`∈Nk

a`kÑ(xn; µ̃n,`, Σ̃n,`), m = 1, 2, . . . ,M; k = 1, 2, . . . ,K. (1.144)

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 35 — #35 i
i

i
i

i
i

1.3 Distributed Particle Filtering 35

Once done, the posterior pdf is again represented by
{
x(m)

n,k ,w
(m)
n,k = 1

M

}M

m=1
.

An alternative direction is to first resample the original local particles x̃(m)
n,k ac-

cording to their weights w̃(m)
n,k . Let the resampled particles be denoted by x̄(m)

n,k . In the
next step, these particles are rescaled and shifted so that they correspond to particles
of a Gaussian distribution with mean µn,k in (1.142) and covariance Σn,k in (1.141).
It is not difficult to show that this can be achieved by

x(m)
n,k = QT

n,kQ̃−T
n,k

(
x̄(m)

n,k − µ̃n,k

)
+ µn,k, (1.145)

where Qn,k is defined by Σn,k = QT
n,kQn,k and Q̃n,k by Σ̃n,k = Q̃T

n,kQ̃n,k. The particles
obtained by (1.145) have all equal weights, and thus they represent the prior pdf for
the state xn+1. This diffusion-based approach is described in the listing (1.146). Note
that the particles generated by (1.143) and (1.144) are all different whereas many of
the ones obtained by (1.145) may be replicated.

Diffusion particle filter (adapt and then combine form)
each agent starts with its own set of particles x(m)

0,k ∼ f (x0), m = 1, 2, . . . ,M.

repeat at every agent k for n ≥ 0 :

(propose a new set of particles)

x̃(m)
n,k ∼ q(xn |x(m)

n−1,k), m = 1, 2, . . . ,M

(compute the weights of the proposed particles)

w̃(m)
n,k ∝

f (zn,k |x̃
(m)
n,k) f (x̃(m)

n,k |x
(m)
n−1,k)

q(x̃(m)
n,k |x

(m)
n−1,k)

(find the parameters of a Gaussian distribution that approximates the posterior)
µ̃n,k =

∑M
m=1 w̃(m)

n,k x̃(m)
n,k

Σ̃n,k =
∑M

m=1 w̃(m)
n,k

(
x̃(m)

n,k − µ̃n,k
) (

x̃(m)
n,k − µ̃n,k

)T

(combine own posterior with the posteriors of the neighbors)

Σn,k =

(∑
`∈Nk a`k

(
Σ̃n,k

)−1
)−1

µn,k = Σn,k

(∑
`∈Nk a`k

(
Σ̃n,k

)−1
µ̃n,k

)
(resample the local particles according to their weights){(

x̃(m)
n,k , w̃

(m)
n,k

)}M

m=1

resampling
−→

{(
x̄(m)

n,k ,w
(m)
n,k = 1

M

)}M

m=1

(rescale and shift the resampled local particles)
x(m)

n,k = QT
n,kQ̃−T

n,k

(
x̄(m)

n,k − µ̃n,k
)

+ µn,k ,where Qn,k and Q̃n,k are defined by

Σn,k = QT
n,kQn,k and Σ̃n,k = Q̃T

n,kQ̃n,k , respectively
end

(1.146)

The performance of the diffusion cooperation can be improved if the calculation
of the particle weights of each agent involves the measurements of the respective
neighbors. This requires that the agents engage in two rounds of communication, one
when they exchange their measurements with their neighbors, and the other when
they exchange the parameters of their posterior pdfs. In this case, the calculation of

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 36 — #36 i
i

i
i

i
i

36 CHAPTER 1 Chapter Title

the weights in (1.138) is replaced by

w̃(m)
n,k ∝

(∏
`∈Nk

f (zn,` |x̃(m)
n,k)

)
f (x̃(m)

n,k |x
(m)
n−1,k)

q(x̃(m)
n,k |x

(m)
n−1,k)

. (1.147)

Everything else in the described process remains the same.
In summary, the diffusion-based particle filtering algorithm described in this sub-

section relies on approximating the local posterior pdfs by Gaussians whose param-
eters are then exchanged with neighbors. Upon receiving the Gaussian parameters
from its neighbors, each agent either uses them to create a new Gaussian that serves
as the final posterior pdf or simply exploits them directly as in (1.143) or (1.144) to
generate particles that represent the support of the final posterior pdf and the prior
pdf of xn+1. However, we reiterate that the underlying approximating distributions
of

{
x̃(m)

n,k , w̃
(m)
n,k

}M

m=1
used by the agents do not have to be Gaussians.

1.4 CONCLUSIONS
In this chapter, we discussed the problem of distributed filtering in a network of
agents. The filtering amounts to estimating a hidden state process based on measure-
ments that are acquired by the agents and contain information about the state process.
The agents cooperate by communicating relevant information with their neighbors.
Two main types of filtering methods were addressed. The first is distributed Kalman
filtering where the state-space models are linear and the state and observation noise
processes are zero-mean and white vector processes with known covariance matri-
ces. The second type is distributed particle filtering where the models are nonlinear
and the pdfs characterizing the state and observation noise processes are known up
to proportionality constants. The distributed Kalman filtering method was based on
the diffusion strategy, with a discussion on the relation and differences relative to
a consensus-type implementation. The distributed particle filtering methods were
addressed by both consensus and diffusion strategies.

ACKNOWLEDGMENTS
The work of A. H. Sayed was supported by the NSF under grants ECCS-1407712 and CCF-
1524250. The author is grateful to the IEEE for allowing reproduction of material from [12] in
this book chapter. The work of P. M. Djurić was supported by the NSF under grant CCF-1618999.
The work of F. Hawatsch was supported by the Austrian Science Fund (FWF) under grant P27370-
N30 and by the Czech Science Foundation (GAČR) under grant 17-19638S.

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 37 — #37 i
i

i
i

i
i

1.5 Appendix 37

1.5 APPENDIX
Lemma 1 (Convergence of Lyapunov recursion). Consider a general Lyapunov
recursion of the form

Zn+1 = CnZnCT
n + Bn (1.148)

where the matrix sequences {Bn,Cn} converge uniformly to {B,C} as n→ ∞ with C
being a stable matrix (all its eigenvalues lie strictly inside the unit circle). Then, the
sequence Zn converges to the unique solution Z of the Lyapunov equation

Z = CZCT + B. (1.149)

Proof: Using the vec notation we have

vec(Zn+1) = (Cn ⊗ Cn)vec(Zn) + vec(Bn) ∆
= Tnvec(Zn) + dn, (1.150)

where we introduced the quantities Tn = (Cn ⊗ Cn) and dn = vec(Bn). We know from
the assumptions in the lemma that dn converges to d = vec(B) and Tn converges
to T = (C ⊗ C), which is a stable matrix since C is stable. It follows that vec(Zn)
converges to vec(Z) = (I − C ⊗ C)−1d, which establishes that the limiting Z is the
solution to the Lyapunov equation (1.149). We can establish this convergence result
more formally as follows by adjusting the proof given for Theorem 1 in App. E
of [12]. Let zn = vec(Zn), z = vec(Z), Tn − T = ε∆n, and dn − d = εδn, for some
arbitrary scalar ε > 0 and quantities {δn,∆n}. Using z = Tz + d and zn+1 = Tn zn + dn,
we get

zn+1 − z = T(zn − z) + ε∆n(zn − z) + ε∆n z + εδn. (1.151)

Now, since T is a stable matrix, there exists a sub-multiplicative matrix norm, de-
noted by ‖ · ‖ρ, such that ‖T‖ρ = c < 1 [77]. Using this norm, and the triangle in-
equality, we have

‖zn+1 − z‖ρ ≤ ‖T‖ρ‖zn − z‖ρ + ε‖∆n‖ρ‖zn − z‖ρ + ε‖∆n‖ρ‖z‖ρ + ε‖δn‖ρ. (1.152)

In the limit, as n→ ∞, we can choose ‖∆n‖ρ ≤ 1 and ‖δn‖ρ ≤ 1, which implies that

‖zn+1 − z‖ρ ≤ (‖T‖ρ + ε)‖zn − z‖ρ + ε(‖z‖ρ + 1), as n→ ∞. (1.153)

But since ‖T‖ρ < 1, we can select ε small enough such that ‖T‖ρ + ε < 1 and, hence,

lim
n→∞
‖zn+1 − z‖ρ = ε(‖z‖ρ + 1)/(1 − ‖T‖ρ − ε). (1.154)

Since ε can be chosen arbitrarily small, it follows that ‖zn+1 − z‖ → 0 as n→ ∞.
�

Lemma 2 (Stability of F). For any left-stochastic matrix A and block diagonal
matrixDwith the 2−induced norms of its blocks strictly bounded by one, it holds that
the matrix product B = ATD is stable. Consequently, when ‖(IN − P+

k Sk)F‖2 < 1,

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 38 — #38 i
i

i
i

i
i

38 CHAPTER 1 Chapter Title

the matrix F defined below is stable:

F
∆
= ATX, X

∆
= (IKN − P

+S)(IK ⊗ F). (1.155)

Proof: This argument adjusts the proof given for Lemma 2 in [12], where the ρ−norm
should be replaced by the block-maximum norm defined as follows [78]. Let x =

col{x1, x2, . . . , xK} denote a K × 1 block column vector whose individual entries are
themselves vectors of size N × 1 each. The block maximum norm of x is denoted
by ‖x‖b,∞ and is defined as ‖x‖b,∞ = max1≤k≤K ‖xk‖. This vector norm induces a
block-maximum matrix norm. Let A denote an arbitrary K × K block matrix with
individual block entries of size N × N each. Then, the block-maximum norm of A
is defined as

‖A‖b,∞
∆
= max

x,0

‖Ax‖b,∞
‖x‖b,∞

. (1.156)

The block-maximum norm has several useful properties — see [78]. In particu-
lar, when A is K × K left-stochastic and A = A ⊗ IN , then it can be verified that
‖AT‖b,∞ = 1. Likewise, when D is block diagonal with the 2−induced norm of its
diagonal blocks bounded by one, it is easy to check that ‖D‖b,∞ < 1. Consequently,
for B = ATD we get

ρ(B) ≤ ‖B‖b,∞ ≤ ‖AT‖b,∞‖D‖b,∞ < 1, (1.157)

and we conclude that B is stable. Alternatively, we note that

‖Bn‖b,∞ ≤
(
‖AT‖b,∞

)n (
‖D‖b,∞

)n
−→ 0, as n→ ∞. (1.158)

The matrix F in (1.155) has a form that fits into this formulation with D =

(IKN − P
+S)(IK ⊗ F) = X, which is block diagonal. Moreover, since by assump-

tion ‖(IKN − P+
k Sk)F‖2 < 1, it holds that ‖D‖b,∞ = ‖X‖b,∞ < 1.

�

REFERENCES
1. Zhu Y, You Z, Zhao J, Zhang K, Li XR, The optimality for the distributed Kalman filtering

fusion with feedback. Automatica 2001; 37(9):1489–1493.
2. Coates M, Distributed particle filters for sensor networks. In: Proceedings of the 3rd Interna-

tional Symposium on Information Processing in Sensor Networks, ACM, 2004, pp. 99–107.
3. Spanos DP, Olfati-Saber R, Murray RM, Approximate distributed Kalman filtering in sensor

networks with quantifiable performance. In: Proceedings of the 4th ACM/IEEE International
Symposium on Information Processing in Sensor Networks, 2005, pp. 133–139.

4. Ribeiro A, Giannakis GB, Roumeliotis SI, SOI-KF: Distributed Kalman filtering with low-cost
communications using the sign of innovations. IEEE Transactions on Signal Processing 2006;
54(12):4782–4795.

5. Olfati-Saber R, Distributed Kalman filtering for sensor networks. In: 46th IEEE Conference

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 39 — #39 i
i

i
i

i
i

1.5 Appendix 39

on Decision and Control, IEEE, 2007, pp. 5492–5498.
6. Khan UA, Moura JM, Distributing the Kalman filter for large-scale systems. IEEE Transactions

on Signal Processing 2008; 56(10):4919–4935.
7. Cattivelli FS, Lopes CG, Sayed AH, Diffusion strategies for distributed Kalman filtering: For-

mulation and performance analysis. In: Proceedings of the IAPR Workshop on Cognitive In-
formation Processing, IEEE, 2008, pp. 36–41.

8. Cattivelli FS, Sayed AH, Diffusion mechanisms for fixed-point distributed Kalman smoothing.
In: 16th European Signal Processing Conference, 2008, pp. 1–5.

9. Carli R, Chiuso A, Schenato L, Zampieri S, Distributed Kalman filtering based on consensus
strategies. IEEE Journal on Selected Areas in Communications 2008; 26(4):622–633.

10. Cattivelli F, Sayed AH, Diffusion distributed Kalman filtering with adaptive weights. In: Pro-
ceedings of Asilomar Conference on Signals, Systems and Computers, IEEE, 2009, pp. 908–
912.

11. Olfati-Saber R, Kalman-consensus filter: Optimality, stability, and performance. In: Proceed-
ings of the 48th IEEE Conference on Decision and Control, held jointly with the 28th Chinese
Control Conference, 2009, pp. 7036–7042.

12. Cattivelli FS, Sayed AH, Diffusion strategies for distributed Kalman filtering and smoothing.
IEEE Transactions on Automatic Control 2010; 55(9):2069–2084.

13. Hlinka O, Slučiak O, Hlawatsch F, xić PM, Rupp M, Likelihood consensus and its application
to distributed particle filtering. IEEE Transactions on Signal Processing 2012; 60(8):4334–
4349.

14. Djurić PM, Wang Y, Distributed Bayesian learning in multiagent systems: Improving our
understanding of its capabilities and limitations. IEEE Signal Processing Magazine 2012;
29(2):65–76.

15. Sayed AH, Adaptation, learning, and optimization over networks. Foundations and Trends R©

in Machine Learning 2014; 7(4-5):311–801.
16. Zhao F, Guibas LJ, Wireless Sensor Networks: An Information Processing Approach. Amster-

dam, The Netherlands: Morgan Kaufmann, 2004.
17. Hlinka O, Hlawatsch F, Djurić PM, Distributed particle filtering in agent networks: A survey,

classification, and comparison. IEEE Signal Processing Magazine 2013; 30(1):61–81.
18. Sayed AH, Adaptive networks. Proceedings of the IEEE 2014; 102(4):460–497.
19. Anderson BDO, Moore JB, Optimal Filtering. Englewood Cliffs, NJ: Prentice Hall, 1979.
20. Arulampalam MS, Maskell S, Gordon N, Clapp T, A tutorial on particle filters for online

nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing 2002;
50(2):174–188.

21. Li XR, Jilkov VP, Survey of maneuvering target tracking. Part I. Dynamic models. IEEE Trans-
actions on Aerospace and Electronic Systems 2003; 39(4):1333–1364.

22. Tu SY, Sayed AH, Diffusion strategies outperform consensus strategies for distributed estima-
tion over adaptive networks. IEEE Transactions on Signal Processing 2012; 60(12):6217–6234.

23. Towfic ZJ, Chen J, Sayed AH, Excess-risk of distributed stochastic learners. IEEE Transactions
on Information Theory 2016; 62(10):5753–5785.

24. Xiao L, Boyd S, Lall S, A scheme for robust distributed sensor fusion based on average con-
sensus. In: Proceedings of the 4th ACM/IEEE International Symposium on Information Pro-
cessing in Sensor Networks, Los Angeles, CA, 2005, pp. 63–70.

25. Olfati-Saber R, Fax JA, Murray RM, Consensus and cooperation in networked multi-agent
systems. Proceedings of the IEEE 2007; 95(1):215–233.

26. Aysal TC, Yildiz ME, Sarwate AD, Scaglione A, Broadcast gossip algorithms for consensus.

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 40 — #40 i
i

i
i

i
i

40 CHAPTER 1 Chapter Title

IEEE Transactions on Signal Processing 2009; 57(7):2748–2761.
27. Dimakis AG, Kar S, Moura JMF, Rabbat MG, Scaglione A, Gossip algorithms for distributed

signal processing. Proceedings of the IEEE 2010; 98(11):1847–1864.
28. Kailath T, Sayed AH, Hassibi B, Linear Estimation. Prentice Hall Upper Saddle River, NJ,

2000.
29. Sayed AH, Adaptive Filters. John Wiley & Sons, 2008.
30. Chang KC, Saha RK, Bar-Shalom Y, On optimal track-to-track fusion. IEEE Transactions on

Aerospace and Electronic Systems 1997; 33(4):1271–1276.
31. Atherton DP, Bather JA, Briggs AJ, Data fusion for several Kalman filters tracking a single

target. IEE Proceedings – Radar, Sonar and Navigation 2005; 152(5):372–376.
32. Mitchell HB, Multi-sensor Data Fusion: An Introduction. Springer Science & Business Media,

2007.
33. Julier SJ, Uhlmann JK, A non-divergent estimation algorithm in the presence of unknown

correlations. In: Proceedings of the American Control Conference, vol. 4, vol. 4, 1997, pp.
2369–2373.

34. Uhlmann JK, Covariance consistency methods for fault-tolerant distributed data fusion. Infor-
mation Fusion 2003; 4(3):201–215.

35. Hu J, Xie L, Zhang C, Diffusion Kalman filtering based on covariance intersection. IEEE
Transactions on Signal Processing 2012; 60(2):891–902.

36. Kay SM, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle
River, NJ: Prentice Hall, 1993.

37. Djurić PM, Khan M, Johnston DE, Particle filtering of stochastic volatility modeled with lever-
age. IEEE Journal of Selected Topics in Signal Processing 2012; 6(4):327–336.

38. Hlinka O, Hlawatsch F, Distributed particle filtering in the presence of mutually correlated
sensor noises. In: Proceedings of IEEE International Conference on Acoustics, Speech and
Signal Processing, IEEE, 2013, pp. 6269–6273.

39. Moldaschl M, Gansterer WN, Hlinka O, Meyer F, Hlawatsch F, Distributed decorrelation in
sensor networks with application to distributed particle filtering. In: Proceedings of IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing, IEEE, 2014, pp. 6117–
6121.

40. Urteaga I, Djurić PM, Sequential estimation of hidden ARMA processes by particle filtering:
Part I. IEEE Transactions on Signal Processing 2017; 65(2):482–493.

41. Urteaga I, Djurić PM, Sequential estimation of hidden ARMA processes by particle filtering:
Part II. IEEE Transactions on Signal Processing 2017; 65(2):494–504.

42. Tanizaki H, Nonlinear Filters: Estimation and Applications. Berlin, Germany: Springer, 1996.
43. Alspach D, Sorenson H, Nonlinear Bayesian estimation using Gaussian sum approximations.

IEEE Transactions on Automatic Control 1972; 17(4):439–448.
44. Julier SJ, Uhlmann JK, Unscented filtering and nonlinear estimation. Proceedings of the IEEE

2004; 92(3):401–422.
45. van der Merwe R, Sigma-point Kalman filters for probabilistic inference in dynamic state-

space models. Ph.D. thesis, OGI School of Science and Engineering, Oregon Health and Sci-
ence University, Hillsboro, OR, 2004.

46. Arasaratnam I, Haykin S, Cubature Kalman filters. IEEE Transactions on Automatic Control
2009; 54(6):1254–1269.

47. Gordon NJ, Salmond DJ, Smith AFM, Novel approach to nonlinear/non-Gaussian Bayesian
state estimation. IEE Proceedings F (Radar and Signal Processing) 1993; 140(2):107–113.

48. Djurić PM, Kotecha JH, Zhang J, Huang Y, Ghirmai T, Bugallo MF, et al., Particle filtering.

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 41 — #41 i
i

i
i

i
i

1.5 Appendix 41

IEEE Signal Processing Magazine 2003; 20(5):19–38.
49. Cappé O, Godsill SJ, Moulines E, An overview of existing methods and recent advances in

sequential Monte Carlo. Proceedings of the IEEE 2007; 95(5):899–924.
50. Bugallo MF, Elvira V, Martino L, Luengo D, Miguez J, Djurić PM, Adaptive importance sam-

pling: The past, the present, and the future. IEEE Signal Process Magazine 2017; 34(4):60–79.
51. Li T, Bolic M, Djurić PM, Resampling methods for particle filtering: Classification, imple-

mentation, and strategies. IEEE Signal Processing Magazine 2015; 32(3):70–86.
52. Oreshkin BN, Coates MJ, Asynchronous distributed particle filter via decentralized evaluation

of Gaussian products. In: Proceedings of FUSION, 2010.
53. Farahmand S, Roumeliotis SI, Giannakis GB, Set-membership constrained particle filter:

Distributed adaptation for sensor networks. IEEE Transactions of Signal Processing 2011;
59(9):4122–4138.

54. Üstebay D, Coates M, Rabbat M, Distributed auxiliary particle filters using selective gossip.
In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing,
2011, pp. 3296–3299.

55. Mohammadi A, Asif A, Consensus-based distributed unscented particle filter. In: Proceedings
of IEEE Statistical Signal Processing Workshop, 2011, pp. 237–240.

56. Hlinka O, Slučiak O, Hlawatsch F, Djurić PM, Rupp M, Likelihood consensus and its applica-
tion to distributed particle filtering. IEEE Transactions on Signal Processing 2012; 60(8):4334–
4349.

57. Hlinka O, Hlawatsch F, Djurić PM, Consensus-based distributed particle filtering with dis-
tributed proposal adaptation. IEEE Transactions on Signal Processing 2014; 62(12):3029–
3041.

58. Bordin CJ, Bruno MGS, Consensus-based distributed particle filtering algorithms for coopera-
tive blind equalization in receiver networks. In: Proceedings of IEEE International Conference
on Acoustics, Speech and Signal Processing, 2011, pp. 3968–3971.

59. Bandyopadhyay S, Chung SJ, Distributed estimation using Bayesian consensus filtering. In:
Proceedings of American Control Conference, 2014, pp. 634–641.

60. Mohammadi A, Asif A, Distributed consensus + innovation particle filtering for bearing/range
tracking with communication constraints. IEEE Transactions on Signal Processing 2015;
63(3):620–635.

61. Wang H, Djurić PM, Diffusion in networks by cooperative particle filtering. In: Proceedings of
the IEEE Workshop on Computational Advances in Multi-sensor Adaptive Processing, 2017.

62. Yu JY, Coates MJ, Rabbat MG, Blouin S, A distributed particle filter for bearings-only tracking
on spherical surfaces. IEEE Signal Processing Letters 2016; 23(3):326–330.

63. Li J, Nehorai A, Distributed particle filtering via optimal fusion of Gaussian mixtures. IEEE
Transactions on Signal and Information Processing over Networks 2017; To be publsihed.

64. Vázquez MA, Mı́guez J, A robust scheme for distributed particle filtering in wireless sensors
networks. Signal Processing 2017; 131:190–201.

65. Savic V, Wymeersch H, Zazo S, Belief consensus algorithms for fast distributed target tracking
in wireless sensor networks. Signal Processing 2014; 95:149–160.

66. Gautschi W, Orthogonal Polynomials: Computation and Approximation. Oxford, U.K.: Ox-
ford University Press, 2004.

67. Unser M, Splines: A perfect fit for signal and image processing. IEEE Signal Processing Mag-
azine 1999; 16(6):22–38.

68. Mosk-Aoyama D, Shah D, Fast distributed algorithms for computing separable functions. IEEE
Transactions on Information Theory 2008; 54(7):2997–3007.

i
i

“Book-12-17” — 2017/12/17 — 17:11 — page 42 — #42 i
i

i
i

i
i

42 CHAPTER 1 Chapter Title

69. Xiao L, Boyd S, Fast linear iterations for distributed averaging. Systems & Control Letters
2004; 53(1):65–78.

70. Björck Å, Numerical Methods for Least Squares Problems. Philadelphia, PA: SIAM, 1996.
71. Lawson CL, Hanson RJ, Solving Least Squares Problems. Philadelphia, PA: SIAM, 1995.
72. Bishop CM, Pattern Recognition and Machine Learning. New York, NY: Springer, 2006.
73. Kotecha JH, Djurić PM, Gaussian particle filtering. IEEE Transactions on Signal Processing

2003; 51(10):2592–2601.
74. Bolić M, Athalye A, Hong S, Djurić PM, Study of algorithmic and architectural characteristics

of Gaussian particle filters. Journal of Signal Processing Systems 2010; 61(2):205–218.
75. Gales MJF, Airey SS, Product of Gaussians for speech recognition. Computer Speech & Lan-

guage 2006; 20(1):22–40.
76. Ito K, Xiong K, Gaussian filters for nonlinear filtering problems. IEEE Transactions on Auto-

matic Control 2000; 45(5):910–927.
77. Horn RA, Johnson CR, Matrix Analysis. Cambridge University Press, 1990.
78. Sayed AH, Diffusion adaptation over networks. In: Chellapa R, Theodoridis S, editors, Aca-

demic Press Library in Signal Processing, vol. 3, vol. 3, Academic Press, Elsevier, 2014; pp.
323–454.

