
i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 1 — #1 i
i

i
i

i
i

CHAPTER

1Asynchronous Adaptive
Networks1

Ali H. Sayed,∗ and Xiaochuan Zhao∗∗
∗École Polytechnique Fédérale de Lausanne, EPFL, Switzerland

∗∗University of California at Los Angeles, UCLA, USA
∗∗Corresponding author: ali.sayed@epfl.ch

ABSTRACT
The overview article [1] surveyed advances related to adaptation, learning, and optimization
over synchronous networks. Various distributed strategies were discussed that enable a collec-
tion of networked agents to interact locally in response to online streaming data and to contin-
ually learn and adapt to drifts in the data and models. Under reasonable technical conditions,
the adaptive networks were shown to be mean-square stable in the slow adaptation regime, and
their mean-square-error performance and convergence rate were characterized in terms of the
network topology and data statistical properties [5]. Classical results for single-agent adapta-
tion and learning were recovered as special cases. Following the works [2]-[4], this chapter
complements the exposition from [1] and extends the results to asynchronous networks where
agents are subject to various sources of uncertainties that influence their behavior, including
randomly changing topologies, random link failures, random data arrival times, and agents
turning on and off randomly. In an asynchronous environment, agents may stop updating
their solutions or may stop sending or receiving information in a random manner and with-
out coordination with other agents. The presentation will reveal that the mean-square-error
performance of asynchronous networks remains largely unaltered compared to synchronous
networks. The results justify the remarkable resilience of cooperative networks.

Keywords: Multi-agent networks, distributed optimization, diffusion strategy,
asynchronous behavior, adaptive networks.

1 This work was supported in part by NSF grants ECCS-1407712 and CCF-1524250. Co-author X.
Zhao was a PhD student in Electrical Engineering at UCLA. The authors are grateful to IEEE for
allowing reproduction of substantial material from [1]-[4] in this book chapter.

1

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 2 — #2 i
i

i
i

i
i

2 CHAPTER 1 Asynchronous Adaptive Networks

1.1 INTRODUCTION
Adaptive networks consist of a collection of agents with learning abilities. The
agents interact with each other on a local level and diffuse information across the
network to solve inference and optimization tasks in a decentralized manner. Such
networks are scalable, robust to node and link failures, and are particularly suitable
for learning from big data sets by tapping into the power of collaboration among
distributed agents. The networks are also endowed with cognitive abilities due to
the sensing abilities of their agents, their interactions with their neighbors, and the
embedded feedback mechanisms for acquiring and refining information. Each agent
is not only capable of sensing data and experiencing the environment directly, but it
also receives information through interactions with its neighbors and processes and
analyzes this information to drive its learning process.

As already indicated in [1, 5], there are many good reasons for the peaked interest
in networked solutions, especially in this day and age when the word “network” has
become commonplace whether one is referring to social networks, power networks,
transportation networks, biological networks, or other networks. Some of these rea-
sons have to do with the benefits of cooperation over networks in terms of improved
performance and improved robustness and resilience to failure. Other reasons deal
with privacy and secrecy considerations where agents may not be comfortable shar-
ing their data with remote fusion centers. In other situations, the data may already be
available in dispersed locations, as happens with cloud computing. One may also be
interested in learning and extracting information through data mining from large data
sets. Decentralized learning procedures offer an attractive approach to dealing with
such data sets. Decentralized mechanisms can also serve as important enablers for
the design of robotic swarms, which can assist in the exploration of disaster areas.

1.1.1 ASYNCHRONOUS BEHAVIOR
The survey article [1] and monograph [5] focused on the case of synchronous net-
works where data arrive at all agents in a synchronous manner and updates by the
agents are also performed in a synchronous manner. The network topology was as-
sumed to remain largely static during the adaptation process. Under these conditions,
the limits of performance and stability of these networks were identified in some
detail for two main classes of distributed strategies: consensus and diffusion con-
structions. In this chapter, we extend the overview from [1] to cover asynchronous
environments. In such environments, the operation of the network can suffer from the
occurrence of various random events including randomly changing topologies, ran-
dom link failures, random data arrival times, and agents turning on and off randomly.
Agents may also stop updating their solutions or may stop sending or receiving in-
formation in a random manner and without coordination with other agents. Results
in [2, 3, 4] examined the implications of such asynchronous events on network per-
formance in some detail and under a fairly general model for the random events.

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 3 — #3 i
i

i
i

i
i

1.1 Introduction 3

The purpose of this chapter is to summarize the key conclusions from these works
in a manner that complements the presentation from [1] for the benefit of the reader.
While the works [2, 3, 4] consider a broader formulation involving complex-valued
variables, we limit the discussion here to real-valued variables in order not to over-
load the notation and to convey the key insights more directly. Proofs and derivations
are often omitted and can be found in the above references; the emphasis is on pre-
senting the results in a motivated manner and on commenting on the insights they
provide into the operation of asynchronous networks.

We indicated in [2, 3, 4] that there already exist many useful studies in the lit-
erature on the performance of consensus strategies in the presence of asynchronous
events (see, e.g., [11]–[21]. There are also some studies in the context of diffu-
sion strategies [22, 23]. However, with the exception of the latter two works, the
earlier references assumed conditions that are not generally favorable for applica-
tions involving continuous adaptation and learning. For example, some of the works
assumed a decaying step-size, which turns off adaptation after sufficient iterations
have passed. Some other works assumed noise free data, which is a hindrance when
learning from data perturbed by interferences and distortions. A third class of works
focused on studying pure averaging algorithms, which are not required to respond
to continuous data streaming. In the works [2, 3, 4], we adopted a more general
asynchronous model that removes these limitations by allowing for various sources
of random events and, moreover, the events are allowed to occur simultaneously. We
also examined learning algorithms that respond to streaming data to enable adap-
tation. The main conclusion from the analysis in these works, and which will be
summarized in future sections, is that asynchronous networks can still behave in a
mean-square-error stable manner for sufficiently small step-sizes and, interestingly,
their steady-state performance level is only slightly affected in comparison to syn-
chronous behavior. The iterates computed by the various agents are still able to con-
verge and hover around an agreement state with a small mean-square-error. These
are reassuring results that support the intrinsic robustness and resilience of network-
based cooperative solutions.

1.1.2 ORGANIZATION OF THE CHAPTER
Readers will benefit more from this chapter if they review first the earlier article [1].
We continue to follow a similar structure here, as well as a similar notation, since the
material in both this chapter and the earlier reference [1] are meant to complement
each other. We organize the presentation into three main components. The first part
(Sec. 1.2) reviews fundamental results on adaptation and learning by single stand-
alone agents. The second part (Sec. 1.3) covers asynchronous centralized solutions.
The objective is to explain the gain in performance that results from aggregating the
data from the agents and processing it centrally at a fusion center. The centralized
performance is used as a frame of reference for assessing various implementations.
While centralized solutions can be powerful, they nevertheless suffer from a number
of limitations. First, in real-time applications where agents collect data continu-

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 4 — #4 i
i

i
i

i
i

4 CHAPTER 1 Asynchronous Adaptive Networks

ously, the repeated exchange of information back and forth between the agents and
the fusion center can be costly especially when these exchanges occur over wireless
links or require nontrivial routing resources. Second, in some sensitive applications,
agents may be reluctant to share their data with remote centers for various reasons
including privacy and secrecy considerations. More importantly perhaps, central-
ized solutions have a critical point of failure: if the central processor fails, then this
solution method collapses altogether.

For these reasons, we cover in the remaining sections of the chapter (Secs. 1.4
and 1.5) distributed asynchronous strategies of the consensus and diffusion types,
and examine their dynamics, stability, and performance metrics. In the distributed
mode of operation, agents are connected by a topology and they are permitted to
share information only with their immediate neighbors. The study of the behavior of
such networked agents is more challenging than in the single-agent and centralized
modes of operation due to the coupling among interacting agents and due to the fact
that the networks are generally sparsely connected.

1.2 SINGLE-AGENT ADAPTATION AND LEARNING
We begin our treatment by reviewing stochastic gradient algorithms, with emphasis
on their application to the problems of adaptation and learning by stand-alone agents.

1.2.1 RISK AND LOSS FUNCTIONS
Thus, let J(w) : IRM×1 7→ IR denote a twice-differentiable real-valued (cost or utility
or risk) function of a real-valued vector argument, w ∈ IRM×1. When the variable
w is complex-valued, some important technical differences arise that are beyond
the scope of this chapter; they are addressed in [2, 3, 4, 5]. Likewise, some ad-
justments to the arguments are needed when the risk function is non-smooth (non-
differentiable); as explained in the works [24, 25]. It is sufficient for our purposes
in this chapter to limit the presentation to real arguments and smooth risk functions
without much loss in generality.

We denote the gradient vectors of J(w) relative to w and wT by the following row
and column vectors, respectively:

∇w J(w) ∆
=

[
∂J(w)
∂w1

,
∂J(w)
∂w2

, . . . ,
∂J(w)
∂wM

]
(1.1a)

∇wT J(w) ∆
= [∇w J(w)]T (1.1b)

These definitions are in terms of the partial derivatives of J(w) relative to the individ-
ual entries of w = col{w1,w2, . . . ,wM}, where the notation col{·} refers to a column
vector that is formed by stacking its arguments on top of each other. Likewise, the
Hessian matrix of J(w) with respect to w is defined as the following M × M symmet-

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 5 — #5 i
i

i
i

i
i

1.2 Single-Agent Adaptation and Learning 5

ric matrix:

∇2
w J(w) ∆

= ∇wT [∇w J(w)] = ∇w[∇wT J(w)] (1.1c)

which is constructed from two successive gradient operations. It is common in adap-
tation and learning applications for the risk function J(w) to be constructed as the
expectation of some loss function, Q(w; x), where the boldface variable x is used to
denote some random data, say,

J(w) = E Q(w; x) (1.2)

and the expectation is evaluated over the distribution of x.

Example 1 (Mean-square-error (MSE) costs). Let d denote a zero-mean scalar random variable with
variance σ2

d = E d2, and let u denote a zero-mean 1 × M random vector with covariance matrix Ru =

E uTu > 0. The combined quantities {d,u} represent the random variable x referred to in (1.2). The
cross-covariance vector is denoted by rdu = E duT. We formulate the problem of estimating d from u
in the linear least-mean-squares-error sense or, equivalently, the problem of seeking the vector wo that
minimizes the quadratic cost function:

J(w) ∆
= E (d − uw)2 = σ2

d − rT
duw − wTrdu + wTRuw (1.3a)

This cost corresponds to the following choice for the loss function:

Q(w; x) = (d − uw)2 (1.3b)

Such quadratic costs are widely used in estimation and adaptation problems [26]–[30]. They are also
widely used as quadratic risk functions in machine learning applications [31, 32]. The gradient vector and
Hessian matrix of J(w) are easily seen to be:

∇w J(w) = 2 (Ruw − rdu)T , ∇2
w J(w) = 2Ru (1.3c)

�

Example 2 (Logistic or log-loss risks). Let γ denote a binary random variable that assumes the values
±1, and let h denote an M × 1 random (feature) vector with Rh = E hhT. The combined quantities {γ, h}
represent the random variable x referred to in (1.2). In the context of machine learning and pattern classi-
fication problems [31, 32, 33], the variable γ designates the class that feature vector h belongs to. In these
problems, one seeks the vector wo that minimizes the regularized logistic risk function:

J(w) ∆
=

ρ

2
‖w‖2 + E

{
ln

[
1 + e−γhTw

]}
(1.4a)

where ρ > 0 is some regularization parameter, ln(·) is the natural logarithm function, and ‖w‖2 = wTw.
The risk (1.4a) corresponds to the following choice for the loss function:

Q(w; x) ∆
=

ρ

2
‖w‖2 + ln

[
1 + e−γhTw

]
(1.4b)

Once wo is recovered, its value can be used to classify new feature vectors, say, {h`}, into classes +1 or
−1. This can be achieved by assigning feature vectors with hT

` wo ≥ 0 to one class and feature vectors with

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 6 — #6 i
i

i
i

i
i

6 CHAPTER 1 Asynchronous Adaptive Networks

hT
` wo < 0 to another class. It can be easily verified that:

∇w J(w) = ρwT − E

γhT ·
e−γhTw

1 + e−γhTw

 (1.4c)

∇2
w J(w) = ρIM + E

hhT ·
e−γhTw(

1 + e−γhTw
)2

 (1.4d)

where IM denotes the identity matrix of size M × M.
�

1.2.2 CONDITIONS ON COST FUNCTION
Stochastic gradient algorithms are powerful iterative procedures for solving opti-
mization problems of the form

min
w

J(w) (1.5)

While the analysis that follows can be pursued under more relaxed conditions (see,
e.g., the treatments in [34]–[37]), it is sufficient for our purposes to require J(w) to be
strongly-convex and twice-differentiable with respect to w. The cost function J(w) is
said to be ν-strongly convex if, and only if, its Hessian matrix is sufficiently bounded
away from zero [35, 38, 39, 40]:

J(w) is ν-strongly convex⇐⇒ ∇2
w J(w) ≥ νIM > 0 (1.6)

for all w and for some scalar ν > 0, where the notation A > 0 signifies that matrix A is
positive-definite. Strong convexity is a useful condition in the context of adaptation
and learning from streaming data because it helps guard against ill-conditioning in
the algorithms; it also helps ensure that J(w) has a unique global minimum, say, at
location wo; there will be no other minima, maxima, or saddle points. In addition, it
is well-known that strong convexity helps endow stochastic-gradient algorithms with
geometric convergence rates in the order of O(αi), for some 0 ≤ α < 1 and where i
is the iteration index [35, 36].

In many problems of interest in adaptation and learning, the cost function J(w)
is either already strongly-convex or can be made strongly-convex by means of reg-
ularization. For example, it is common in machine learning problems [31, 32] and
in adaptation and estimation problems [28, 30] to incorporate regularization factors
into the cost functions; these factors help ensure strong convexity. For instance, the
mean-square-error cost (1.3a) is strongly convex whenever Ru > 0. If Ru happens to
be singular, then the following regularized cost will be strongly convex:

J(w) ∆
=

ρ

2
‖w‖2 + E (d − uw)2 (1.7)

where ρ > 0 is a regularization parameter similar to (1.4a).
Besides strong convexity, we shall also assume that the gradient vector of J(w) is

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 7 — #7 i
i

i
i

i
i

1.2 Single-Agent Adaptation and Learning 7

δ-Lipschitz, namely, there exists δ > 0 such that

‖∇w J(w2) − ∇w J(w1)‖ ≤ δ ‖w2 − w1‖ (1.8)

for all w1 and w2. It can be verified that for twice-differentiable costs, conditions
(1.6) and (1.8) combined are equivalent to

0 < νIM ≤ ∇
2
w J(w) ≤ δIM (1.9)

For example, it is clear that the Hessian matrices in (1.3c) and (1.4d) satisfy this
property since

2λmin(Ru)IM ≤ ∇
2
w J(w) ≤ 2λmax(Ru)IM (1.10a)

in the first case and

ρIM ≤ ∇
2
w J(w) ≤ (ρ + λmax(Rh))IM (1.10b)

in the second case, where the notation λmin(R) and λmax(R) refers to the smallest and
largest eigenvalues of the symmetric matrix argument, R, respectively. In summary,
we will be assuming the following conditions [5, 41, 42, 2].

Assumption 1 (Conditions on cost function). The cost function J(w) is twice-
differentiable and satisfies (1.9) for some positive parameters ν ≤ δ. Condition (1.9)
is equivalent to requiring J(w) to be ν-strongly convex and for its gradient vector to
be δ-Lipschitz as in (1.6) and (1.8), respectively.

�

1.2.3 STOCHASTIC-GRADIENT APPROXIMATION
The traditional gradient-descent algorithm for solving (1.5) takes the form:

wi = wi−1 − µ∇wT J(wi−1), i ≥ 0 (1.11)

where i ≥ 0 is an iteration index and µ > 0 is a small step-size parameter. Starting
from some initial condition, w−1, the iterates {wi} correspond to successive estimates
for the minimizer wo. In order to run recursion (1.11), we need to have access to
the true gradient vector. This information is generally unavailable in most instances
involving learning from data. For example, when cost functions are defined as the
expectations of certain loss functions as in (1.2), the statistical distribution of the
data x may not be known beforehand. In that case, the exact form of J(w) will not
be known since the expectation of Q(w; x) cannot be computed. In such situations,
it is customary to replace the true gradient vector, ∇wT J(wi−1), by an instantaneous
approximation for it, and which we shall denote by ∇̂wT J(wi−1). Doing so leads to
the following stochastic-gradient recursion in lieu of (1.11):

wi = wi−1 − µ ∇̂wT J(wi−1), i ≥ 0 (1.12)

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 8 — #8 i
i

i
i

i
i

8 CHAPTER 1 Asynchronous Adaptive Networks

We use the boldface notation, wi, for the iterates in (1.12) to highlight the fact that
these iterates are now randomly perturbed versions of the values {wi} generated by
the original recursion (1.11). The random perturbations arise from the use of the
approximate gradient vector. The boldface notation is therefore meant to emphasize
the random nature of the iterates in (1.12). We refer to recursion (1.12) as a syn-
chronous implementation since updates occur continuously over the iteration index
i. This terminology is meant to distinguish the above recursion from its asynchronous
counterpart, which is introduced later in Sec. 1.2.5.

We illustrate construction (1.12) by considering a scenario from classical adap-
tive filter theory [28, 26, 27], where the gradient vector is approximated directly from
data realizations. The construction will reveal why stochastic-gradient implementa-
tions of the form (1.12), using approximate rather than exact gradient information,
become naturally endowed with the ability to respond to streaming data.

Example 3 (LMS adaptation). Let d(i) denote a streaming sequence of zero-mean random variables
with variance σ2

d = E d2(i). Let ui denote a streaming sequence of 1 × M independent zero-mean random
vectors with covariance matrix Ru = E uT

i ui > 0. Both processes {d(i),ui} are assumed to be jointly wide-
sense stationary. The cross-covariance vector between d(i) and ui is denoted by rdu = E d(i)uT

i . The data
{d(i),ui} are assumed to be related via a linear regression model of the form:

d(i) = uiwo + v(i) (1.13a)

for some unknown parameter vector wo, and where v(i) is a zero-mean white-noise process with power
σ2

v = E v2(i) and assumed independent of u j for all i, j. Observe that we are using parentheses to rep-
resent the time-dependency of a scalar variable, such as writing d(i), and subscripts to represent the
time-dependency of a vector variable, such as writing ui. This convention will be used throughout the
chapter. In a manner similar to Example 1, we again pose the problem of estimating wo by minimizing the
mean-square error cost

J(w) = E (d(i) − uiw)2 ≡ EQ(w; xi) (1.13b)

where now the quantities {d(i),ui} represent the random data xi in the definition of the loss function,
Q(w; xi). Using (1.11), the gradient-descent recursion in this case will take the form:

wi = wi−1 − 2µ [Ruwi−1 − rdu] , i ≥ 0 (1.13c)

The main difficulty in running this recursion is that it requires knowledge of the moments {rdu,Ru}. This
information is rarely available beforehand; the adaptive agent senses instead realizations {d(i),ui} whose
statistical distributions have moments {rdu,Ru}. The agent can use these realizations to approximate the
moments and the true gradient vector. There are many constructions that can be used for this purpose, with
different constructions leading to different adaptive algorithms [29, 28, 26, 27]. It is sufficient to focus
on one of the most popular adaptive algorithms, which results from using the data {d(i),ui} to compute
instantaneous approximations for the unavailable moments as follows:

rdu ≈ d(i)uT
i , Ru ≈ uT

i ui (1.13d)

By doing so, the true gradient vector is approximated by:

∇̂wT J(w) = 2
[
uT

i uiw − uT
i d(i)

]
= ∇wT Q(w; xi) (1.13e)

Observe that this construction amounts to replacing the true gradient vector, ∇wT J(w), by the gradient
vector of the loss function itself (which, equivalently, amounts to dropping the expectation operator).
Substituting (1.13e) into (1.13c) leads to the well-known (synchronous) least-mean-squares (LMS, for

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 9 — #9 i
i

i
i

i
i

1.2 Single-Agent Adaptation and Learning 9

short) algorithm [26, 27, 28, 43]:

wi = wi−1 + 2µuT
i [d(i) − uiwi−1] , i ≥ 0 (1.13f)

The LMS algorithm is therefore a stochastic-gradient algorithm. By relying directly on the instantaneous
data {d(i),ui}, the algorithm is infused with useful tracking abilities. This is because drifts in the model
wo from (1.13a) will be reflected in the data {d(i),ui}, which are used directly in the update (1.13f).

�

If desired, it is also possible to employ iteration-dependent step-size sequences,
µ(i), in (1.12) instead of the constant step-size µ, and to require µ(i) to satisfy

∞∑
i=0

µ2(i) < ∞,
∞∑

i=0

µ(i) = ∞ (1.14)

Under some technical conditions, it is well-known that such step-size sequences en-
sure the convergence of wi towards wo almost surely as i→ ∞ [5, 35, 36, 37]. How-
ever, conditions (1.14) force the step-size sequence to decay to zero, which is prob-
lematic for applications requiring continuous adaptation and learning from streaming
data. This is because, in such applications, it is not unusual for the location of the
minimizer, wo, to drift with time. With µ(i) decaying towards zero, the stochastic-
gradient algorithm (1.12) will stop updating and will not be able to track drifts in
the solution. For this reason, we shall focus on constant step-sizes from this point
onwards since we are interested in solutions with tracking abilities.

Now, the use of an approximate gradient vector in (1.12) introduces perturbations
relative to the operation of the original recursion (1.11). We refer to the perturbation
as gradient noise and define it as the difference:

si(wi−1) ∆
= ∇̂wT J(wi−1) − ∇wT J(wi−1) (1.15)

The presence of this perturbation prevents the stochastic iterate, wi, from converging
almost-surely to the minimizer wo when constant step-sizes are used. Some dete-
rioration in performance will occur and the iterate wi will instead fluctuate close
to wo. We will assess the size of these fluctuations by measuring their steady-state
mean-square value (also called mean-square-deviation or MSD). It will turn out that
the MSD is small and in the order of O(µ) — see (1.28c) further ahead. It will
also turn out that stochastic-gradient algorithms converge towards their MSD levels
at a geometric rate. In this way, we will be able to conclude that adaptation with
small constant step-sizes can still lead to reliable performance in the presence of
gradient noise, which is a reassuring result. We will also be able to conclude that
adaptation with constant step-sizes is useful even for stationary environments. This
is because it is generally sufficient in practice to reach an iterate wi within some fi-
delity level from wo in a finite number of iterations. As long as the MSD level is
satisfactory, a stochastic-gradient algorithm will be able to attain satisfactory fidelity

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 10 — #10 i
i

i
i

i
i

10 CHAPTER 1 Asynchronous Adaptive Networks

within a reasonable time frame. In comparison, although diminishing step-sizes en-
sure almost-sure convergence of wi to wo, they nevertheless disable tracking and can
only guarantee slower than geometric rates of convergence (see, e.g., [5, 35, 36, 5]).
The next example from [41] illustrates the nature of the gradient noise process (1.15)
in the context of mean-square-error adaptation.

Example 4 (Gradient noise). It is clear from the expressions in Example 3 that the corresponding gradient
noise process is

si(wi−1) = 2
(
Ru − uT

i ui
)

w̃i−1 − 2uT
i v(i) (1.16a)

where we introduced the error vector:

w̃i
∆
= wo − wi (1.16b)

Let the symbol F i−1 represent the collection of all possible random events generated by the past iterates
{w j} up to time i − 1 (more formally, F i−1 is the filtration generated by the random process w j for j ≤
i − 1):

F i−1
∆
= filtration {w−1, w0, w1, . . . ,wi−1} (1.16c)

It follows from the conditions on the random processes {ui, v(i)} in Example 3 that

E [si(wi−1)|F i−1] = 0 (1.16d)

E
[
‖si(wi−1)‖2 |F i−1

]
≤ 4c ‖w̃i−1‖

2 + 4σ2
v Tr(Ru) (1.16e)

for some constant c ≥ 0. If we take expectations of both sides of (1.16e), we further conclude that the
variance of the gradient noise, E ‖si(wi−1)‖2, is bounded by the combination of two factors. The first
factor depends on the quality of the iterate, E ‖w̃i−1‖

2, while the second factor depends on σ2
v . Therefore,

even if the adaptive agent is able to approach wo with great fidelity so that E ‖w̃i−1‖
2 is small, the size of

the gradient noise will still depend on σ2
v .

�

1.2.4 CONDITIONS ON GRADIENT NOISE PROCESS
In order to examine the convergence and performance properties of the stochastic-
gradient recursion (1.12), it is necessary to introduce some assumptions on the
stochastic nature of the gradient noise process, si(·). The conditions that we intro-
duce in the sequel are similar to conditions used earlier in the optimization literature,
e.g., in [35, pp. 95–102] and [44, p. 635]; they are also motivated by the con-
ditions we observed in the mean-square-error case in Example 4. Following the
developments in [41, 2, 42], we let

Rs,i(wi−1) ∆
= E

[
si(wi−1)sT

i (wi−1)|F i−1

]
(1.17a)

denote the conditional second-order moment of the gradient noise process, which
generally depends on i. We assume that, in the limit, the covariance matrix tends to

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 11 — #11 i
i

i
i

i
i

1.2 Single-Agent Adaptation and Learning 11

a constant value when evaluated at wo and is denoted by

Rs
∆
= lim

i→∞
E

[
si(wo)sT

i (wo)|F i−1

]
(1.17b)

For example, comparing with expression (1.16a) for mean-square-error costs, we
have

si(wo) = − 2uT
i v(i) (1.18a)

Rs = 4σ2
vRu (1.18b)

Assumption 2 (Conditions on gradient noise). It is assumed that the first and
second-order conditional moments of the gradient noise process satisfy (1.17b) and

E [si(wi−1)|F i−1] = 0 (1.19a)

E
[
‖si(wi−1)‖2|F i−1

]
≤ β2 ‖w̃i−1‖

2 + σ2
s (1.19b)

almost surely, for some nonnegative scalars β2 and σ2
s .

�

Condition (1.19a) ensures that the approximate gradient vector is unbiased. It fol-
lows from conditions (1.19a)–(1.19b) that the gradient noise process itself satisfies:

E si(wi−1) = 0 (1.20a)

E ‖si(wi−1)‖2 ≤ β2 E ‖w̃i−1‖
2 + σ2

s (1.20b)

It is straightforward to verify that the gradient noise process (1.16a) in the mean-
square-error case satisfies conditions (1.19a)–(1.19b). Note in particular from
(1.16e) that we can make the identifications σ2

s → 4σ2
vTr(Ru) and β2 → 4c.

1.2.5 RANDOM UPDATES
We examined the performance of synchronous updates of the form (1.12) in some
detail in [1, 5]. As indicated earlier, the focus of the current chapter is on extending
the treatment from [1] to asynchronous implementations. Accordingly, the first main
digression in the exposition relative to [1] occurs at this stage.

Thus, note that the stochastic-gradient recursion (1.12) employs a constant step-
size parameter, µ > 0. This means that this implementation expects the approximate
gradient vector, ∇̂wT J(wi−1), to be available at every iteration. Nevertheless, there
are situations where data may arrive at the agent at random times, in which case the
updates will also be occurring at random times. One way to capture this behavior
is to model the step-size parameter as a random process, which we shall denote
by the boldface notation µ(i) (since boldface letters in our notation refer to random
quantities). Doing so, allows us to replace the synchronous implementation (1.12)

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 12 — #12 i
i

i
i

i
i

12 CHAPTER 1 Asynchronous Adaptive Networks

by the following asynchronous recursion:

wi = wi−1 − µ(i)∇̂wT J(wi−1), i ≥ 0 (1.21)

Observe that we are attaching a time index to the step-size parameter in order to
highlight that its value will now be changing randomly from one iteration to another.

For example, one particular instance discussed further ahead in Example 5 is
when µ(i) is a Bernoulli random variable assuming one of two possible values, say,
µ(i) = µ > 0 with probability pµ and µ(i) = 0 with probability 1 − pµ. In this case,
recursion (1.21) will be updating pµ−fraction of the time. We will not limit our
presentation to the Bernoulli model but will allow the random step-size to assume
broader probability distributions; we denote its first and second-order moments as
follows.

Assumption 3 (Conditions on step-size process). It is assumed that the stochas-
tic process {µ(i), i ≥ 0} consists of a sequence of independent and bounded random
variables, µ(i) ∈ [0, µub], where µub > 0 is a constant upper bound. The mean and
variance of µ(i) are fixed over i, and they are denoted by:

µ̄
∆
= Eµ(i) (1.22a)

σ2
µ

∆
= E (µ(i) − µ̄)2 (1.22b)

with µ̄ > 0 and σ2
µ ≥ 0. Moreover, it is assumed that, for any i, the random variable

µ(i) is independent of any other random variable in the learning algorithm.
�

The following variable will play an important role in characterizing the mean-square-
error performance of asynchronous updates and, hence, we introduce a unique sym-
bol for it:

µx
∆
= µ̄ +

σ2
µ

µ̄
(1.23)

where the subscript “x” is meant to refer to the “asynchronous” mode of operation.
This expression captures the first and second-order moments of the random varia-
tions in the step-size parameter into a single variable, µx. While the constant step-
size µ determines the performance of the synchronous implementation (1.12), it turns
out that the constant variable µx defined above will play an equivalent role for the
asynchronous implementation (1.21). Note further that the synchronous stochastic-
gradient iteration (1.12) can be viewed as a special case of recursion (1.21) when the
variance of µ(i) is set to zero, i.e., σ2

µ = 0, and the mean value µ̄ is set to µ. There-
fore, by using these substitutions, we will able to deduce performance metrics for
(1.12) from the performance metrics that we shall present for (1.21). The following

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 13 — #13 i
i

i
i

i
i

1.2 Single-Agent Adaptation and Learning 13

two examples illustrate situations involving random updates.

Example 5 (Random updates under a Bernoulli model). Assume that at every iteration i, the agent
adopts a random “on-off” policy to reduce energy consumption. It tosses a coin to decide whether to enter
an active learning mode or a sleeping mode. Let 0 < pµ < 1 denote the probability of entering the active
mode. During the active mode, the agent employs a step-size value µ. This model is useful for situations
in which data arrives randomly at the agent: at every iteration i, new data is available with probability pµ.
The random step-size process is therefore of the following type:

µ(i) =

µ, with probability pµ
0, with probability 1 − pµ

(1.24a)

In this case, the mean and variance of µ(i) are given by:

µ̄ = pµµ, σ2
µ = pµ(1 − pµ)µ2, µx = µ (1.24b)

�

Example 6 (Random updates under a Beta model). Since the random step-size µ(i) is limited to a
finite-length interval [0, µub], we may extend the Bernoulli model from the previous example by adopting
a more general continuous Beta distribution for µ(i). The Beta distribution is an extension of the Bernoulli
distribution. While the Bernoulli distribution assumes two discrete possibilities for the random variable,
say, {0, µ}, the Beta distribution allows for any value in the continuum [0, µ].

Thus, let x denote a generic scalar random variable that assumes values in the interval [0, 1] accord-
ing to a Beta distribution. Then, according to this distribution, the pdf of x, denoted by fx(x; ξ, ζ), is
determined by two shape parameters {ξ, ζ} as follows [45, 46]:

fx(x; ξ, ζ) =


Γ(ξ + ζ)
Γ(ξ)Γ(ζ)

xξ−1(1 − x)ζ−1, 0 ≤ x ≤ 1

0, otherwise
(1.25a)

where Γ(·) denotes the Gamma function [47, 48]. Figure 1.1 plots fx(x; ξ, ζ) for two values of ζ. The mean
and variance of the Beta distribution (1.25a) are given by:

x̄ =
ξ

ξ + ζ
, σ2

x =
ξζ

(ξ + ζ)2(ξ + ζ + 1)
(1.25b)

We note that the classical uniform distribution over the interval [0, 1] is a special case of the Beta distri-
bution for ξ = ζ = 1 — see Fig. 1.1. Likewise, the Bernoulli distribution with pµ = 1/2 is recovered from
the Beta distribution by letting ξ = ζ → 0.

In the Beta model for asynchronous adaptation, we assume that the ratio µ(i)/µub follows a Beta
distribution with parameters {ξ, ζ}. Under this model, the mean and variance of the random step-size
become:

µ̄ =

(
ξ

ξ + ζ

)
µub, σ2

µ =

(
ξζ

(ξ + ζ)2(ξ + ζ + 1)

)
µ2

ub (1.26)

�

1.2.6 MEAN-SQUARE-ERROR STABILITY
We now examine the convergence of the asynchronous stochastic-gradient recursion
(1.21). In the statement below, the notation a = O(µ) means a ≤ bµ for some con-
stant b that is independent of µ.

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 14 — #14 i
i

i
i

i
i

14 CHAPTER 1 Asynchronous Adaptive Networks

FIGURE 1.1 Beta distribution.
The pdf of the Beta distribution, fx(x; ξ, ζ), defined by (1.25a) for different values of the shape
parameters ξ and ζ. Source: Figure extracted with permission from [2].

Lemma 1 (Mean-square-error stability). Assume the conditions under Assump-
tions 1, 2, and 3 on the cost function, the gradient noise process, and the random
step-size process hold. Let µo = 2ν/(δ2 + β2). For any µx satisfying

µx < µo (1.27)

it holds that E ‖w̃i‖
2 converges exponentially (i.e., at a geometric rate) according to

the recursion

E ‖w̃i‖
2 ≤ αE ‖w̃i−1‖

2 + (µ̄2 + σ2
µ)σ2

s (1.28a)

where the scalar α satisfies 0 ≤ α < 1 and is given by

α
∆
= 1 − 2νµ̄ + (δ2 + β2)(µ̄2 + σ2

µ)

= 1 − 2νµ̄ + O(µ2
x) (1.28b)

It follows from (1.28a) that, for sufficiently small step-sizes:

lim sup
i→∞

E ‖w̃i‖
2 = O(µx) (1.28c)

Proof. We subtract wo from both sides of (1.21) to get

w̃i = w̃i−1 + µ(i)∇wT J(wi−1) + µ(i) si(wi−1) (1.29a)

We now appeal to the mean-value theorem [5, 35, 49] to write:

∇wT J(wi−1) = −

[∫ 1

0
∇2

w J(wo − tw̃i−1)dt
]

w̃i−1
∆
= −Hi−1w̃i−1 (1.29b)

where we are introducing the symmetric and random time-variant matrix Hi−1 to represent the integral

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 15 — #15 i
i

i
i

i
i

1.2 Single-Agent Adaptation and Learning 15

expression. Substituting into (1.29a), we get

w̃i = [IM − µ(i)Hi−1] w̃i−1 + µ(i) si(wi−1) (1.29c)

so that from Assumption 2:

E
[
‖w̃i‖

2 |F i−1
]
≤

(
E

[
‖IM − µ(i) Hi−1‖

2 |F i−1
])
‖w̃i−1‖

2 +
(
E µ2(i)

) (
E

[
‖si(wi−1)‖2 |F i−1

])
(1.30)

It follows from (1.9) that

‖IM − µ(i) Hi−1‖
2 =

[
ρ (IM − µ(i) Hi−1)

]2

≤ max
{[

1 − µ(i) δ
]2 ,

[
1 − µ(i) ν

]2
}

≤ 1 − 2µ(i) ν + µ2(i)δ2 (1.31a)

since ν ≤ δ. In the first line above, the notation ρ(A) denotes the spectral radius of its matrix argument
(i.e., ρ(A) = maxk |λk(A)| in terms of the largest magnitude eigenvalue of A). From (1.31a) we obtain

E
(
‖IM − µ(i) Hi−1‖

2 |F i−1
)
≤ 1 − 2µ̄ν + (µ̄2 + σ2

µ)δ2 (1.31b)

Taking expectations of both sides of (1.30), we arrive at (1.28a) from (1.20b) and (1.31b) with α given
by (1.28b). The bound in (1.27) on the moments of the random step-size ensures that 0 ≤ α < 1. For the
O(µ2

x) approximation in expression (1.28b) note from (1.23) that

(µ̄2 + σ2
µ) = µ̄µx ≤ µ2

x (1.32)

Iterating recursion (1.28a) gives

E ‖w̃i‖
2 ≤ αi+1 E ‖w̃−1‖

2 +
(µ̄2 + σ2

µ)σ2
s

1 − α
(1.33a)

Since 0 ≤ α < 1, there exists an iteration value Io large enough such that

αi+1 E ‖w̃−1‖
2 ≤

(µ̄2 + σ2
µ)σ2

s

1 − α
, i > Io (1.33b)

It follows that the variance E ‖w̃i‖
2 converges exponentially to a region that is upper bounded by 2(µ̄2 +

σ2
µ)σ2

s/(1 − α). It can be verified that this bound does not exceed 2µxσ
2
s/ν, which is O(µx), for any

µx < µo/2.
�

1.2.7 MEAN-SQUARE-ERROR PERFORMANCE
We conclude from (1.28c) that the mean-square error (MSE) can be made as small
as desired by using small step-sizes, µx. In this section we derive a closed-form
expression for the asymptotic mean-square error, which is more frequently called
the mean-square deviation (MSD) and is defined as:

MSD ∆
= lim

i→∞
E ‖w̃i‖

2 (1.34a)

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 16 — #16 i
i

i
i

i
i

16 CHAPTER 1 Asynchronous Adaptive Networks

Strictly speaking, the limit on the right-hand side of the above expression may not
exist. A more accurate definition for the MSD appears in Eq. (4.86) of [5], namely,

MSD ∆
= µx ·

(
lim
µx→0

lim sup
i→∞

1
µx
E ‖w̃i‖

2
)

(1.34b)

However, it was explained in [5][Sec. 4.5] that derivations that assume the validity of
(1.34a) still lead to the same expression for the MSD to first-order in µx as derivations
that rely on the more formal definition (1.34b). We therefore continue with (1.34a)
for simplicity of presentation. We explain below how an expression for the MSD can
be obtained by following the energy conservation technique of [5, 29, 28, 50, 51].
For that purpose, we need to introduce two smoothness conditions.

Assumption 4 (Smoothness conditions). In addition to Assumptions 1 and 2, we
assume that the Hessian matrix of the cost function and the noise covariance matrix
defined by (1.17a) are locally Lipschitz continuous in a small neighborhood around
w = wo: ∥∥∥∇2

w J(wo + δw) − ∇2
w J(wo)

∥∥∥ ≤ τ ‖δw‖ (1.35a)∥∥∥Rs,i(wo + δw) − Rs,i(wo)
∥∥∥ ≤ τ2 ‖δw‖κ (1.35b)

for small perturbations ‖δw‖ ≤ r and for some τ, τ2 ≥ 0 and 1 ≤ κ ≤ 2.
�

The range of values for κ can be enlarged, e.g., to κ ∈ (0, 4]. The only change in
allowing a wider range for κ is that the exponent of the higher-order term, O(µ3/2

x),
that will appear in several performance expressions, as is the case with (1.41a)–
(1.41b), will need to be adjusted from 3

2 to min{ 32 , 1 + κ
2 }, without affecting the first-

order term that determines the MSD [3, 5, 52]. Therefore, it is sufficient to continue
with κ ∈ [1, 2] to illustrate the key concepts though the MSD expressions will still be
valid to first-order in µx.

Using (1.9), it can be verified that condition (1.35a) translates into a global Lips-
chitz property relative to the minimizer wo, i.e., it will also hold that [5, 3]:

‖∇2
w J(w) − ∇2

w J(wo)‖ ≤ τ′ ‖w − wo‖ (1.35c)

for all w and for some τ′ ≥ 0. For example, both conditions (1.35a)–(1.35b) are read-
ily satisfied by mean-square-error costs. Using property (1.35c), we can now moti-
vate a useful long-term model for the evolution of the error vector w̃i after sufficient
iterations, i.e., for i � 1. Indeed, let us reconsider recursion (1.29c) and introduce
the deviation matrix:

H̃i−1
∆
= H − Hi−1 (1.36a)

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 17 — #17 i
i

i
i

i
i

1.2 Single-Agent Adaptation and Learning 17

where the constant (symmetric and positive-definite) matrix H is defined as:

H ∆
= ∇2

w J(wo) (1.36b)

Substituting (1.36a) into (1.29c) gives

w̃i = (IM − µ(i) H) w̃i−1 + µ(i) si(wi−1) + µ(i) ci−1 (1.37a)

where

ci−1
∆
= H̃i−1w̃i−1 (1.37b)

Using (1.35c) and the fact that (E a)2 ≤ E a2 for any real-valued random variable,
we can bound the conditional expectation of the norm of the perturbation term as
follows:

E
[
‖µ(i) ci−1‖ |F i−1

]
= (Eµ(i)) (E [‖ci−1‖ |F i−1])

≤

√(
Eµ2(i)

)
E [‖ci−1‖|F i−1]

(1.35c)
≤

√
µ̄2 + σ2

µ ·
τ′

2
‖w̃i−1‖

2

≤
µ̄2 + σ2

µ

µ̄
·
τ′

2
‖w̃i−1‖

2

= µx ·
τ′

2
‖w̃i−1‖

2 (1.38a)

so that using (1.28c), we conclude that:

lim sup
i→∞

E ‖µ(i) ci−1‖ = O(µ2
x) (1.38b)

We can deduce from this result that ‖µ(i) ci−1‖ = O(µ2
x) asymptotically with high

probability [5, 3]. To see this, let rc = mµ2
x, for any constant integer m ≥ 1. Now,

calling upon Markov’s inequality [53, 54, 55], we conclude from (1.38b) that for
i � 1:

Pr (‖µ(i) ci−1‖ < rc) = 1 − Pr (‖µ(i) ci−1‖ ≥ rc)

≥ 1 −
E ‖µ(i) ci−1‖

rc
(1.38b)
≥ 1 − O (1/m) (1.38c)

This result shows that the probability of having ‖µ(i) ci−1‖ bounded by rc can be made
arbitrarily close to one by selecting a large enough value for m. Once the value for
m has been fixed to meet a desired confidence level, then rc = O(µ2

x). This analysis,
along with recursion (1.37a), motivate us to assess the mean-square performance of
the error recursion (1.29c) by considering instead the following long-term model,

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 18 — #18 i
i

i
i

i
i

18 CHAPTER 1 Asynchronous Adaptive Networks

which holds with high probability after sufficient iterations i � 1:

w̃i = (IM − µ(i) H)w̃i−1 + µ(i) si(wi−1) + O(µ2
x) (1.39)

Working with iteration (1.39) is helpful because its dynamics is driven by the con-
stant matrix H as opposed to the random matrix Hi−1 in the original error recursion
(1.29c). If desired, it can be shown that, under some technical conditions on the
fourth-order moment of the gradient noise process, the MSD expression that will re-
sult from using (1.39) is within O(µ3/2

x) of the actual MSD expression for the original
recursion (1.29c) — see [5, 52, 3] for a formal proof of this fact. Therefore, it is suf-
ficient to rely on the long-term model (1.39) to obtain performance expressions that
are accurate to first-order in µx. Figure 1.2 provides a block-diagram representation
for (1.39).

FIGURE 1.2 Long-term dynamics.
A block-diagram representation of the long-term recursion (1.39) for single-agent adaptation and
learning. Source: Figure extracted with permission from [1].

Before explaining how model (1.39) can be used to assess the MSD, we remark
that there is a second useful metric for evaluating the performance of stochastic gra-
dient algorithms. This metric relates to the mean excess-cost; which is also called
the excess-risk (ER) in the machine learning literature [31, 32] and the excess-mean-
square-error (EMSE) in the adaptive filtering literature [26, 27, 28]. We denote it by
the letters ER and define it as the average fluctuation of the cost function around its
minimum value:

ER ∆
= lim

i→∞
E {J(wi−1) − J(wo)} (1.40a)

Using the smoothness condition (1.35a), and the mean-value theorem [35, 49] again,

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 19 — #19 i
i

i
i

i
i

1.2 Single-Agent Adaptation and Learning 19

it can be verified that [3, 5, 52]:

ER ∆
= lim

i→∞
E ‖w̃i−1‖

2
1
2 H

+ O(µ3/2
x) (1.40b)

Lemma 2 (Mean-square-error performance). Assume the conditions under As-
sumptions 1, 2, 3, and 4 on the cost function, the gradient noise process, and the
random step-size process hold. Assume further that the asynchronous step-size pa-
rameter µx is sufficiently small to ensure mean-square stability as required by (1.27).
Then, the MSD and ER metrics for the asynchronous stochastic-gradient algorithm
(1.21) are well-approximated to first-order in µx by the expressions:

MSDasyn =
µx

2
Tr

(
H−1Rs

)
+ O(µ3/2

x) (1.41a)

ERasyn =
µx

4
Tr (Rs) + O(µ3/2

x) (1.41b)

where Rs and H are defined by (1.17b) and (1.36b), and where we are adding the
superscript “asyn” for clarity in order to distinguish these measures from the cor-
responding measures in the synchronous case (mentioned below in (1.43a)–(1.43c)).
Moreover, we derived earlier in (1.28b) the following expression for the convergence
rate:

αasyn = 1 − 2νµ̄ + O(µ2
x) (1.41c)

Proof. We introduce the eigen-decomposition H = UΛUT, where U is orthonormal and Λ is diagonal
with positive entries, and rewrite (1.39) in terms of transformed quantities:

wi = (IM − µ(i) Λ) wi−1 + µ(i) si(wi−1) + O(µ2
x) (1.42a)

where wi = UTw̃i and si(wi−1) = UT si(wi−1). Let Σ denote an arbitrary M × M diagonal matrix with
positive entries that we are free to choose. Then, equating the weighted squared norms of both sides of
(1.42a) and taking expectations gives for i � 1:

E ‖wi‖
2
Σ = E ‖wi−1‖

2
Σ′ + (µ̄2 + σ2

µ)E ‖si(wi−1)‖2Σ + O(µ5/2
x) (1.42b)

where

Σ′
∆
= E (IM − µ(i) Λ)Σ(IM − µ(i) Λ) = Σ − 2µ̄ΛΣ + O(µ2

x) (1.42c)

From (1.17b), (1.19b), (1.28c), and (1.35b) we obtain:

lim
i→∞
E ‖si(wi−1)‖2Σ = Tr(UΣUTRs) + O(µκ/2x) (1.42d)

Therefore, substituting into (1.42b) gives for i→ ∞:

lim
i→∞
E ‖wi‖

2
2ΛΣ = µx Tr(UΣUTRs) + O(µ3/2

x) (1.42e)

Since we are free to choose Σ, we let Σ = 1
2 Λ−1 and arrive at (1.41a) since ‖wi‖

2 = ‖w̃i‖
2 and UΣUT =

1
2 H−1. On the other hand, selecting Σ = 1

4 IM leads to (1.41b).
�

We recall our earlier remark that the synchronous stochastic-gradient recursion

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 20 — #20 i
i

i
i

i
i

20 CHAPTER 1 Asynchronous Adaptive Networks

(1.12) can be viewed as a special case of the asynchronous update (1.21) by setting
σ2
µ = 0 and µx = µ̄ ≡ µ. Substituting these values into (1.41a)–(1.41c), we obtain for

the synchronous implementation (1.12):

MSDsync =
µ

2
Tr

(
H−1Rs

)
+ O(µ3/2) (1.43a)

ERsync =
µ

2
Tr (Rs) + O(µ3/2) (1.43b)

αsync = 1 − 2νµ + O(µ2) (1.43c)

which are the same expressions presented in [1] and which agree with classical re-
sults for LMS adaptation [56]–[61]. The matrices Rs that appear in these expressions,
and in (1.41a)–(1.41c), were defined earlier in (1.17b) and they correspond to the co-
variance matrices of the gradient noise processes in their respective (synchronous or
asynchronous) implementations. The examples that follow show how expressions
(1.41a) and (1.41b) can be used to recover performance metrics for mean-square-
error adaptation and learning under random updates.

Example 7 (Performance of asynchronous LMS adaptation). We reconsider the LMS recursion (1.13f)
albeit in an asynchronous mode of operation, namely,

wi = wi−1 + 2µ(i)uT
i [d(i) − uiwi−1] , i ≥ 0 (1.44)

We know from Example 3 and (1.18a) that this situation corresponds to H = 2Ru and Rs = 4σ2
vRu. Sub-

stituting into (1.41a) and (1.41b) leads to the following expressions for the MSD and EMSE of the asyn-
chronous LMS filter:

MSDasyn
LMS ≈ µx Mσ2

v = O(µx) (1.45a)

EMSEasyn
LMS ≈ µxσ

2
vTr(Ru) = O(µx) (1.45b)

where here, and elsewhere, we will be using the notation ≈ to indicate that we are ignoring higher-order
terms in µx. For example, let us assume a Bernoulli update model for µ(i) where the filter updates with
probability pµ using a step-size value µ or stays inactive otherwise. In this case, we conclude from (1.24b)
that µx = µ so that the above performance expressions for the MSD and EMSE metrics will coincide with
the values obtained in the synchronous case as well. In other words, the steady-state performance levels
are not affected whether the algorithm learns in a synchronous or asynchronous manner. However, the
convergence rate is affected since µ̄ = µpµ and, therefore,

α
sync
LMS ≈ 1 − 2νµ (1.46a)

α
asyn
LMS ≈ 1 − 2νµpµ > α

sync
LMS (1.46b)

It follows that asynchronous LMS adaptation attains the same performance levels as synchronous LMS
adaptation albeit at a slower convergence rate.

We may alternatively compare the performance of the synchronous and asynchronous implementa-
tions by fixing their convergence rates to the same value. Thus, consider now a second random update
scheme with mean µ̄ and let us set µ = µ̄. That is, the step-size used by the synchronous implementa-
tion is set equal to the mean step-size used by the asynchronous implementation. Then, in this case, we
will get αsync

LMS = α
asyn
LMS so that the convergence rates coincide to first-order. However, it now holds that

MSDasyn
LMS > MSDsync

LMS since µ̄x > µ so that some deterioration in MSD performance occurs.
�

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 21 — #21 i
i

i
i

i
i

1.3 Centralized Adaptation and Learning 21

Example 8 (Performance of asynchronous online learners). Consider a stand-alone learner receiving a
streaming sequence of independent data vectors {xi, i ≥ 0} that arise from some fixed probability distribu-
tionX. The goal is to learn the vector wo that optimizes some ν-strongly convex risk function J(w) defined
in terms of a loss function [62, 63]:

wo ∆
= argminw J(w) = argminw EQ(w; xi) (1.47a)

In an asynchronous environment, the learner seeks wo by running the stochastic-gradient algorithm with
random step-sizes:

wi = wi−1 − µ(i)∇wT Q(wi−1; xi), i ≥ 0 (1.47b)

The gradient noise vector is still given by

si(wi−1) = ∇wT Q(wi−1; xi) − ∇wT J(wi−1) (1.47c)

Since ∇w J(wo) = 0, and since the distribution of xi is stationary, it follows that the covariance matrix of
si(wo) is constant and given by

Rs = E∇wT Q(wo; xi)∇w Q(wo; xi) (1.47d)

The excess-risk measure that will result from this stochastic implementation is then given by (1.41b) so
that ER = O(µx).

�

1.3 CENTRALIZED ADAPTATION AND LEARNING
The discussion in the previous section establishes the mean-square stability of stand-
alone adaptive agents for small step-sizes (Lemma 1), and provides expressions for
their MSD and ER metrics (Lemma 2). We now examine two situations involving a
multitude of similar agents. In the first scenario, each agent senses data and analyzes
it independently of the other agents. We refer to this mode of operation as non-
cooperative processing. In the second scenario, the agents transmit the collected data
for processing at a fusion center. We refer to this mode of operation as centralized
or batch processing. We motivate the discussion by considering first the case of
mean-square-error costs. Subsequently, we extend the results to more general costs.

1.3.1 NON-COOPERATIVE MSE PROCESSING
Thus, consider separate agents, labeled k = 1, 2, . . . ,N. Each agent, k, receives
streaming data

{dk(i),uk,i; i ≥ 0} (1.48a)

where we are using the subscript k to index the data at agent k. We assume that the
data at each agent satisfies the same statistical properties as in Example 3, and the
same linear regression model (1.13a) with a common wo albeit with noise vk(i). We

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 22 — #22 i
i

i
i

i
i

22 CHAPTER 1 Asynchronous Adaptive Networks

denote the statistical moments of the data at agent k by

Ru,k = EuT
k,iuk,i > 0, σ2

v,k = E v2
k(i) (1.48b)

We further assume in this motivating example that the Ru,k are uniform across the
agents so that

Ru,k ≡ Ru, k = 1, 2, . . . ,N (1.48c)

In this way, the cost Jk(w) = E (dk(i) − uk,iw)2, which is associated with agent k, will
satisfy a condition similar to (1.9) with the corresponding parameters {ν, δ} given by
(cf. (1.10a)):

ν = 2λmin(Ru), δ = 2λmax(Ru) (1.49a)

Now, if each agent runs the asynchronous LMS learning rule (1.44) to estimate wo

on its own then, according to (1.45a), each agent k will attain an individual MSD
level that is given by

MSDasyn
ncop,k ≈ µxM σ2

v,k, k = 1, 2, . . . ,N (1.49b)

where we are further assuming that the parameter µx is uniform across the agents
to enable a meaningful comparison. Moreover, according to (1.28b), agent k will
converge towards this level at a rate dictated by:

α
asyn
ncop,k ≈ 1 − 4µxλmin(Ru) (1.49c)

The subscript “ncop” is used in (1.49b) and (1.49c) to indicate that these expressions
are for the non-cooperative mode of operation. It is seen from (1.49b) that agents
with noisier data (i.e., larger σ2

v,k) will perform worse and have larger MSD levels
than agents with cleaner data. We are going to show in later sections that cooperation
among the agents, whereby agents share information with their neighbors, can help
enhance their individual performance levels.

1.3.2 CENTRALIZED MSE PROCESSING
Let us now contrast the above non-cooperative solution with a centralized implemen-
tation whereby, at every iteration i, the N agents transmit their raw data {dk(i),uk,i} to
a fusion center for processing. In a synchronous environment, once the fusion center
receives the raw data, it can run a standard stochastic-gradient update of the form:

wi = wi−1 + µ

 1
N

N∑
k=1

2uT
k,i(dk(i) − uk,iwi−1)

 (1.50a)

where µ is the constant step-size, and the term multiplying µ can be seen to corre-
spond to a sample average of several approximate gradient vectors. The analysis in

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 23 — #23 i
i

i
i

i
i

1.3 Centralized Adaptation and Learning 23

[1, 5] showed that the MSD performance that results from this implementation is
given by (using expression (1.64a) with Hk = 2Ru and Rs,k = 4σ2

v,kRu):

MSDsync
cent ≈

µM
N

 1
N

N∑
k=1

σ2
v,k

 (1.50b)

Moreover, using expression (1.64b) given further ahead, this centralized solution
will converge towards the above MSD level at the same rate as the non-cooperative
solution:

α
sync
cent ≈ 1 − 4µλmin(Ru) (1.50c)

In an asynchronous environment, there are now several random events that can
interfere with the operation of the fusion center. Let us consider initially one partic-
ular random event that corresponds to the situation in which the fusion center may or
may not update at any particular iteration (e.g., due to some power-saving strategy).
In a manner similar to (1.21), we may represent this scenario by writing:

wi = wi−1 + µ(i)

 1
N

N∑
k=1

2uT
k,i(dk(i) − uk,iwi−1)

 (1.51a)

with a random step-size process, µ(i); this process is again assumed to satisfy the
conditions under Assumption 3. The analysis in the sequel will show that the MSD
performance that results from this implementation is given by:

MSDasyn,1
cent ≈

µxM
N

 1
N

N∑
k=1

σ2
v,k

 (1.51b)

where we are adding the superscript “1” to indicate that this is a preliminary re-
sult pertaining to the particular asynchronous implementation (1.51a). We will be
generalizing this result soon, at which point we will drop the superscript “1”. Like-
wise, using expression (1.64b) given further ahead, this version of the asynchronous
centralized solution converges towards the above MSD level at the same rate as the
non-cooperative solution (1.49c) and the synchronous version (1.50c):

α
asyn,1
cent ≈ 1 − 4µxλmin(Ru) (1.51c)

Observe from (1.50b) and (1.51b) that the MSD level attained by the centralized
solution is proportional to 1/N times the average noise power across all agents. This
scaled average noise power can be larger than some of the individual noise variances
and smaller than the remaining noise variances. This example shows that it does not
generally hold that centralized stochastic-gradient implementations outperform all
individual non-cooperative agents [64].

Now, more generally, observe that in the synchronous batch processing case

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 24 — #24 i
i

i
i

i
i

24 CHAPTER 1 Asynchronous Adaptive Networks

(1.50a), as well as in the asynchronous implementation (1.51a), the data collected
from the various agents are equally aggregated with a weighting factor equal to 1/N.
We can incorporate a second type of random events besides the random variations in
the step-size parameter. This second source of uncertainty involves the possibility of
failure (or weakening) in the links connecting the individual agents to the fusion cen-
ter (e.g., due to fading or outage, or perhaps due to the agents themselves deciding
to enter into a sleep mode according to some power-saving policy). We can capture
these possibilities by extending formulation (1.51a) in the following manner:

wi = wi−1 + µ(i)

 N∑
k=1

2πk(i)uT
k,i(dk(i) − uk,iwi−1)

 (1.52a)

where µ(i) continues to be a random step-size process, but now the coefficients
{πk(i); k = 1, 2, . . . ,N} are new random fusion coefficients that satisfy:

N∑
k=1

πk(i) = 1, πk(i) ≥ 0 (1.52b)

for every i ≥ 0.

Assumption 5 (Conditions on random fusion coefficients). It is assumed that πk(i)
is independent of µ(i) and of other random variables in the learning algorithm. The
fusion coefficients are also independent over time, namely, πk(i) and π`(j) are inde-
pendent for any i , j. For the same time i, the coefficients {πk(i)} are correlated over
space in view of the first requirement in (1.52b). The mean and co-variance(s) of
each πk(i) are denoted by:

π̄k
∆
= Eπk(i) (1.53a)

cπ,k`
∆
= E (πk(i) − π̄k)(π`(i) − π̄`) (1.53b)

for all k, ` = 1, 2, . . . ,N and all i ≥ 0. When k = `, the scalar cπ,kk corresponds to
the variance of πk(i) and, therefore, we shall also use the alternative notation σ2

π,k
for this case:

σ2
π,k

∆
= cπ,kk ≥ 0 (1.53c)

�

It is straightforward to verify that the first and second-order moments of the coeffi-

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 25 — #25 i
i

i
i

i
i

1.3 Centralized Adaptation and Learning 25

cients {πk(i)} satisfy:

π̄k ≥ 0,
N∑

k=1

π̄k = 1 (1.54a)

N∑
k=1

cπ,k` = 0, for any ` (1.54b)

N∑
`=1

cπ,k` = 0, for any k (1.54c)

Note that the earlier asynchronous implementation (1.51a) is a special case of the
more general formulation (1.52a) when the mean of the random fusion coefficients
are chosen as π̄k = 1/N and their variances are set to zero, σ2

π,k = 0. In order to en-
able a fair and meaningful comparison among the three centralized implementations
(1.50a), (1.51a), and (1.52a), we shall assume that the means of the fusion coeffi-
cients in the latest implementation are set to π̄k = 1/N (results for arbitrary mean
values are listed in Example 9 further ahead and appear in [4]). We will show in the
sequel that for this choice of π̄k, the MSD performance of implementation (1.52a) is
given by:

MSDasyn
cent ≈

µxM
N

 1
N

N∑
k=1

(
1 + N2 σ2

π,k

)
σ2

v,k

 (1.55a)

Moreover, using expression (1.62b) given further ahead, this asynchronous central-
ized solution will converge towards the above MSD level at the same rate as the
non-cooperative solution (1.49c) and the synchronous version (1.50c):

α
asyn
cent ≈ 1 − 4µxλmin(Ru) (1.55b)

1.3.3 STOCHASTIC-GRADIENT CENTRALIZED SOLUTION
The previous two sections focused on mean-square-error costs. We now extend the
conclusions to more general costs. Thus, consider a collection of N agents, each with
an individual convex cost function, Jk(w). The objective is to determine the unique
minimizer wo of the aggregate cost:

Jglob(w) ∆
=

N∑
k=1

Jk(w) (1.56)

It is now the above aggregate cost, Jglob(w), that will be required to satisfy the con-
ditions of Assumptions 1 and 4 relative to some parameters {νc, δc, τc}, with the sub-
script “c” used to indicate that these factors correspond to the centralized implemen-

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 26 — #26 i
i

i
i

i
i

26 CHAPTER 1 Asynchronous Adaptive Networks

tation. Under these conditions, the cost Jglob(w) will have a unique minimizer, which
we continue to denote by wo. We will not be requiring each individual cost, Jk(w), to
be strongly convex. It is sufficient for at least one of these costs to be strongly convex
while the remaining costs can be convex; this condition ensures the strong convex-
ity of Jglob(w). Moreover, although some individual costs may not have a unique
minimizer, we require in this exposition that wo is one of their minima so that all
individual costs share a minimum at location wo; the treatment in [1, 5, 65] considers
the more general case in which the minimizers of the individual costs {Jk(w)} can be
different and need not contain a common location, wo.

There are many centralized solutions that can be used to determine the unique
minimizer wo of (1.56), with some solution techniques being more powerful than
other techniques. Nevertheless, we shall focus on centralized implementations of
the stochastic-gradient type. The reason we consider the same class of stochastic
gradient algorithms for non-cooperative, centralized, and distributed solutions in this
chapter is to enable a meaningful comparison among the various implementations.
Thus, we first consider a synchronous centralized strategy of the following form:

wi = wi−1 − µ

 1
N

N∑
k=1

∇̂wT Jk(wi−1)

 , i ≥ 0 (1.57a)

with a constant step-size, µ. When the fusion center employs random step-sizes, the
above solution is replaced by:

wi = wi−1 − µ(i)

 1
N

N∑
k=1

∇̂wT Jk(wi−1)

 , i ≥ 0 (1.57b)

where the process µ(i) now satisfies Assumption 3. More generally, the asyn-
chronous implementation can employ random fusion coefficients as well such as:

wi = wi−1 − µ(i)
N∑

k=1

πk(i)∇̂wT Jk(wi−1), i ≥ 0 (1.57c)

where the coefficients {πk(i)} satisfy Assumption 5 with means

π̄k = 1/N (1.57d)

1.3.4 PERFORMANCE OF CENTRALIZED SOLUTION
To examine the performance of the asynchronous implementation (1.57c)–(1.57d),
we proceed in two steps. First, we identify the gradient noise that is present in
the recursion; it is equal to the difference between the true gradient vector for the
global cost, Jglob(w), defined by (1.56) and its approximation. Second, we argue that
(1.57c) has a form similar to the single-agent stochastic-gradient algorithm (1.21)

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 27 — #27 i
i

i
i

i
i

1.3 Centralized Adaptation and Learning 27

and, therefore, invoke earlier results to write down performance metrics for the cen-
tralized solution (1.57c)–(1.57d).

We start by introducing the individual gradient noise processes:

sk,i(wi−1) ∆
= ∇̂wT Jk(wi−1) − ∇wT Jk(wi−1) (1.58a)

for k = 1, 2, . . . ,N. We assume that these noises satisfy conditions similar to As-
sumption 2 with parameters {β2

k , σ
2
s,k,Rs,k}, i.e.,

Rs,k
∆
= lim

i→∞
E

[
sk,i(wo)sT

k,i(w
o)|F i−1

]
(1.58b)

and

E
[
sk,i(wi−1)|F i−1

]
= 0 (1.58c)

E
[
‖sk,i(wi−1)‖2|F i−1

]
≤ β2

k ‖w̃i−1‖
2 + σ2

s,k (1.58d)

Additionally, we assume that the gradient noise components across the agents are
uncorrelated with each other:

E
[
sk,i(wi−1)sT

`,i(wi−1)
∣∣∣F i−1

]
= 0, all k , ` (1.58e)

Using these gradient noise terms, it is straightforward to verify that recursion (1.57c)
can be rewritten as:

wi = wi−1 −
µ(i)
N

si(wi−1) +

N∑
k=1

∇wT Jk(wi−1)

 (1.59)

where si(wi−1) denotes the overall gradient noise; its expression is given by

si(wi−1) =

N∑
k=1

[
Nπk(i)∇̂wT Jk(wi−1) − ∇wT Jk(wi−1)

]
(1.60)

Since iteration (1.59) has the form of a stochastic gradient recursion with random
update similar to (1.21), we can infer its mean-square-error behavior from Lemmas
1 and 2 if the noise process si(wi−1) can be shown to satisfy conditions similar to
Assumption 2 with some parameters {β2

c , σ
2
s}. Indeed, starting from (1.60), some

algebra will show that

E [si(wi−1)|F i−1] = 0 (1.61a)
E

[
‖si(wi−1)‖2|F i−1

]
≤ β2

c‖w̃i−1‖
2 + σ2

s (1.61b)

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 28 — #28 i
i

i
i

i
i

28 CHAPTER 1 Asynchronous Adaptive Networks

where

β2
c

∆
=

N∑
k=1

[
β2

k + N2σ2
π,k(β2

k + δ2
c)
]

(1.61c)

σ2
s

∆
=

N∑
k=1

(1 + N2σ2
π,k)σ2

s,k (1.61d)

The following result now follows from Lemmas 1 and 2 [4, 5].

Lemma 3 (Convergence of centralized solution). Assume the aggregate cost (1.56)
satisfies the conditions under Assumption 1 for some parameters 0 < νc ≤ δc. As-
sume further that the individual gradient noise processes defined by (1.58a) satisfy
the conditions under Assumption 2 for some parameters {β2

k , σ
2
s,k,Rs,k}, in addition to

the orthogonality condition (1.58e). Let µo = 2νc/(δ2
c + β2

c). For any µx/N < µo, the
iterates generated by the asynchronous centralized solution (1.57c)–(1.57d) satisfy:

E ‖w̃i‖
2 ≤ αE ‖w̃i−1‖

2 + σ2
s(µ̄2 + σ2

µ)/N2 (1.62a)

where the scalar α satisfies 0 ≤ α < 1 and is given by

α
asyn
cent = 1 − 2νc (µx/N) + (δ2

c + β2
c)(µ̄2 + σ2

µ)/N2 (1.62b)

It follows from (1.62a) that for sufficiently small step-size parameter µx � 1:

lim sup
i→∞

E ‖w̃i‖
2 = O(µx) (1.62c)

Moreover, under smoothness conditions similar to (1.35a) for Jglob(w) for some pa-
rameter τc ≥ 0, and similar to (1.35b) for the individual gradient noise covariance
matrices, it holds for small µx that:

MSDasyn
cent =

µx

2N
Tr


 N∑

k=1

Hk

−1  N∑
k=1

(1 + N2σ2
π,k)Rs,k


 + O

(
µ3/2

x

)
(1.63)

where Hk = ∇2
w Jk(wo). �

We can recover from the expressions in the lemma, performance results for the par-
ticular asynchronous implementation described earlier by (1.57b) by setting σ2

π,k = 0
so that

MSDasyn,1
cent ≈

µx

2N
Tr


 N∑

k=1

Hk

−1  N∑
k=1

Rs,k


 (1.64a)

α
asyn,1
cent ≈ 1 − 2νcµx/N (1.64b)

It is seen from (1.63) and (1.64a) that when the fusion center operates under the more
general asynchronous policy (1.57c), the additional randomness in the fusion coeffi-

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 29 — #29 i
i

i
i

i
i

1.3 Centralized Adaptation and Learning 29

cients {πk(i)} degrades the MSD performance relative to (1.64a) due to the presence
of the factor 1 + N2σ2

π,k > 1, i.e., to first-order in µx we have:

MSDasyn,1 < MSDasyn (1.65a)

In comparison, the added randomness due to the {πk(i)} does not have significant
impact on the convergence rate since it is straightforward to see that, to first order in
the step-size parameter µx:

α
asyn,1
cent ≈ α

asyn
cent (1.65b)

Likewise, setting µ̄k = µ and σ2
π,k = 0, the performance of the synchronous central-

ized solution (1.57a) is obtained as a special case of the results in the lemma:

MSDsync
cent ≈

µ

2N
Tr


 N∑

k=1

Hk

−1  N∑
k=1

Rs,k


 (1.66a)

α
sync
cent ≈ 1 − 2νcµ/N (1.66b)

These expressions agree with the performance results presented in [1, 5].

Example 9 (Case of general mean-values). Although not used in this chapter, we remark in passing that
if the mean values {π̄k} are not fixed at 1/N, as was required by (1.57d), then the MSD performance of the
asynchronous centralized solution (1.57c) will instead be given by

MSDasyn
cent =

µxN
2

Tr


 N∑

k=1

Hk


−1  N∑

k=1

(π̄2
k + σ2

π,k)Rs,k


 + O

(
µ3/2

x

)
(1.67)

�

1.3.5 COMPARISON WITH NON-COOPERATIVE
PROCESSING

We can now compare the performance of the asynchronous centralized solution
(1.57c) against the performance of non-cooperative processing when agents act in-
dependently of each other and run the recursion:

wk,i = wk,i−1 − µ(i) ∇̂wT Jk(wk,i−1), i ≥ 0 (1.68a)

This comparison is meaningful when all agents share the same unique minimizer so
that we can compare how well the individual agents are able to recover the same
wo as the centralized solution. For this reason, we re-introduce the requirement that
all individual costs {Jk(w)} are ν-strongly convex with a uniform parameter ν. Since
Jglob(w) is the aggregate sum of the individual costs, then we can set the lower bound
νc for the Hessian of Jglob(w) at νc = Nν. From expressions (1.28b) and (1.64b) we
then conclude that, for a sufficiently small µx, the convergence rates of the asyn-
chronous non-cooperative solution (1.68a) and the asynchronous centralized solution

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 30 — #30 i
i

i
i

i
i

30 CHAPTER 1 Asynchronous Adaptive Networks

with random update (1.57b) will be similar:

α
asyn
cent ≈ 1 − 2νc (µx/N) = 1 − 2νµx ≈ α

asyn
ncop,k (1.68b)

Moreover, we observe from (1.41a) that the average MSD level across N non-
cooperative asynchronous agents is given by

MSDasyn
ncop,av ≈

µx

2N
Tr

 N∑
k=1

H−1
k Rs,k

 (1.68c)

so that comparing with (1.64a), some simple algebra allows us to conclude that, for
small step-sizes and to first order in µx:

MSDasyn,1
cent ≤ MSDasyn

ncop,av (1.68d)

That is, while the asynchronous centralized solution (1.57b) with random updates
need not outperform every individual non-cooperative agent in general, its perfor-
mance outperforms the average performance across all non-cooperative agents.

The next example illustrates this result by considering the scenario where
all agents have the same Hessian matrices at w = wo, namely, Hk ≡ H for k =

1, 2, . . . ,N. This situation occurs, for example, when the individual costs are
identical across the agents, say, Jk(w) ≡ J(w), as is common in machine learning
applications. This situation also occurs for the mean-square-error costs we con-
sidered earlier in this section when the regression covariance matrices, {Ru,k}, are
uniform across all agents, i.e., Ru,k ≡ Ru for k = 1, 2, . . . ,N. In these cases with
uniform Hessian matrices Hk, the example below establishes that the asynchronous
centralized solution (1.57b) with random updates improves over the average MSD
performance of the non-cooperative solution (1.68a) by a factor of N.

Example 10 (N-fold improvement in MSD performance). Consider a collection of N agents whose
individual cost functions, Jk(w), are ν-strongly convex and are minimized at the same location w = wo.
The costs are also assumed to have identical Hessian matrices at w = wo, i.e., Hk ≡ H. Then, using (1.64a),
the MSD of the asynchronous centralized implementation (1.57b) with random updates is given by:

MSDasyn,1
cent ≈

1
N

 µx

2N

N∑
k=1

Tr(H−1Rs,k)

 ≈ 1
N

MSDasyn
ncop,av (1.69)

�

Example 11 (Random fusion can degrade MSD performance). Although the convergence rates of the
asynchronous centralized solution (1.57c) and the non-cooperative solution (1.68a) agree to first-order in
µx, the relation between their MSD values is indefinite (contrary to (1.68d)), as illustrated by the following
example.

Consider the same setting of Example 10 and assume further that the variances of the random fusion
coefficients are uniform, i.e., σ2

π,k ≡ σ
2
π. Then, using (1.63), the MSD of the asynchronous centralized

implementation (1.57c) is given by

MSDasyn
cent ≈

1 + N2σ2
π

N

 µx

2N

N∑
k=1

Tr(H−1Rs,k)

 ≈ (
1 + N2σ2

π

N

)
MSDasyn

ncop,av (1.70)

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 31 — #31 i
i

i
i

i
i

1.3 Centralized Adaptation and Learning 31

Therefore, to first-order in µx, we find thatMSDasyn
cent ≤ MSDasyn

ncop,av, if σ2
π ≤

N−1
N2

MSDasyn
cent > MSDasyn

ncop,av, if σ2
π >

N−1
N2

(1.71)

In other words, if the variance of the random fusion coefficients is large enough, then the centralized
solution will generally have degraded performance relative to the non-cooperative solution (which is an
expected result).

�

Example 12 (Fully-connected networks). In preparation for the discussion on networked agents, it is
useful to describe one extreme situation where a collection of N agents are fully connected to each other
— see Fig. 1.3. In this case, each agent is able to access the data from all other agents and, therefore, each
individual agent can run a synchronous or asynchronous centralized implementation, say, one of the same
form as (1.57b):

wk,i = wk,i−1 − µ(i)

 1
N

N∑
`=1

∇̂wT J`(wk,i−1)

 , i ≥ 0 (1.72)

1

2

3

4

5

6

7

FIGURE 1.3 Fully-connected network.
Example of a fully-connected network, where each agent can access information from all other
agents.Source: Figure extracted with permission from [1].

When this happens, each agent will attain the same performance level as that of the asynchronous
centralized solution (1.57b). Two observations are in place. First, note from (1.72) that the information

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 32 — #32 i
i

i
i

i
i

32 CHAPTER 1 Asynchronous Adaptive Networks

that agent k is receiving from all other agents is their gradient vector approximations. Obviously, other
pieces of information could be shared among the agents, such as their iterates {w`,i−1}. Second, note that
the right-most term multiplying µ(i) in (1.72) corresponds to a convex combination of the approximate
gradients from the various agents, with the combination coefficients being uniform and all equal to 1/N.
In general, there is no need for these combination weights to be identical. Even more importantly, agents
do not need to have access to information from all other agents in the network. We are going to see in the
sequel that interactions with a limited number of neighbors is sufficient for the agents to attain performance
that is comparable to that of the centralized solution.

Figure 1.4 shows a simple selection of connected topologies for five agents. The leftmost panel
corresponds to the non-cooperative case and the rightmost panel corresponds to the fully-connected case.
The panels in between illustrate some other topologies. In the coming sections, we are going to present
results that allow us to answer useful questions about such networked agents such as: (a) Which topology
has best performance in terms of mean-square error and convergence rate? (b) Given a connected topology,
can it be made to approach the performance of the centralized solution? (c) Which aspects of the topology
influence performance? (d) Which aspects of the combination weights (policy) influence performance? (e)
Can different topologies deliver similar performance levels? (f) Is cooperation always beneficial? and (g)
If the individual agents are able to solve the inference task individually in a stable manner, does it follow
that the connected network will remain stable regardless of the topology and regardless of the cooperation
strategy?

FIGURE 1.4 Connected networks.
Examples of connected networks, with the left-most panel representing a collection of non-
cooperative agents. Source: Figure extracted with permission from [1].

�

1.4 SYNCHRONOUS MULTI-AGENT ADAPTATION
AND LEARNING

In this section, we describe distributed strategies of the consensus (e.g., [7, 11, 15]
and [68]–[77]) and diffusion (e.g., [1, 5, 6, 7, 41, 78, 79, 80]) types. These strategies
rely solely on localized interactions among neighboring agents, and they can be used
to seek the minimizer of (1.56). We first describe the network model.

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 33 — #33 i
i

i
i

i
i

1.4 Synchronous Multi-Agent Adaptation and Learning 33

1.4.1 STRONGLY-CONNECTED NETWORKS
Figure 1.5 shows an example of a network consisting of N connected agents, labeled
k = 1, 2, . . . ,N. Following the presentation from [5, 7], the network is represented
by a graph consisting of N vertices (representing the agents) and a set of edges con-
necting the agents to each other. An edge that connects an agent to itself is called
a self-loop. The neighborhood of an agent k is denoted by Nk and it consists of all
agents that are connected to k by an edge. Any two neighboring agents k and ` have
the ability to share information over the edge connecting them.

111

113

112

119

118

115

117

116

1

114

FIGURE 1.5 Neighborhoods and interactions.
Agents that are linked by edges can share information. The neighborhood of agent k is marked
by the highlighted area. Source: Figure extracted with permission from [1].

We assume an undirected graph so that if agent k is a neighbor of agent `, then
agent ` is also a neighbor of agent k. We assign a pair of nonnegative scaling weights,
{ak`, a`k}, to the edge connecting k and `. The scalar a`k is used by agent k to scale
the data it receives from agent `; this scaling can be interpreted as a measure of the
confidence level that agent k assigns to its interaction with agent `. Likewise, ak`

is used by agent ` to scale the data it receives from agent k. The weights {ak`, a`k}
can be different so that the exchange of information between the neighboring agents
{k, `} need not be symmetrical. One or both weights can also be zero.

A network is said to be connected if paths with nonzero scaling weights can be

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 34 — #34 i
i

i
i

i
i

34 CHAPTER 1 Asynchronous Adaptive Networks

found linking any two distinct agents in both directions, either directly when they are
neighbors or by passing through intermediate agents when they are not neighbors.
In this way, information can flow in both directions between any two agents in the
network, although the forward path from an agent k to some other agent ` need not
be the same as the backward path from ` to k. A strongly-connected network is a
connected network with at least one non-trivial self-loop, meaning that akk > 0 for
some agent k.

The strong connectivity of a network translates into a useful property on the com-
bination weights. Assume we collect the coefficients {a`k} into an N × N matrix
A = [a`k], such that the entries on the k-th column of A contain the coefficients used
by agent k to scale data arriving from its neighbors ` ∈ Nk; we set a`k = 0 if ` < Nk.
We refer to A as the combination matrix or policy. It turns out that combination
matrices that correspond to strongly-connected networks are primitive — an N × N
matrix A with nonnegative entries is said to be primitive if there exists some finite
integer no > 0 such that all entries of Ano are strictly positive [5, 7, 81].

1.4.2 DISTRIBUTED OPTIMIZATION
Network cooperation can be exploited to solve adaptation, learning, and optimiza-
tion problems in a decentralized manner in response to streaming data. To explain
how cooperation can be achieved, we start by associating with each agent k a twice-
differentiable cost function Jk(w) : IRM×1 7→ IR. The objective of the network of
agents is to seek the unique minimizer of the aggregate cost function, Jglob(w), de-
fined by (1.56). Now, however, we seek a distributed (as opposed to a centralized)
solution. In a distributed implementation, each agent k can only rely on its own data
and on data from its neighbors.

We continue to assume that Jglob(w) satisfies the conditions of Assumptions 1 and
4 with parameters {νd, δd, τd}, with the subscript “d” now used to indicate that these
parameters are related to the distributed implementation. Under these conditions, the
cost Jglob(w) will have a unique minimizer, which we continue to denote by wo. For
simplicity of presentation, we will also assume in the remainder of this chapter that
the individual costs Jk(w) are strongly convex as well. These costs can be distinct
across the agents or they can all be identical, i.e., Jk(w) ≡ J(w) for k = 1, 2, . . . ,N; in
the latter situation, the problem of minimizing (1.56) would correspond to the case
in which the agents work together to optimize the same cost function. If we let wo

k
denote the minimizer of Jk(w), we continue to assume for this exposition that each
Jk(w) is also minimized at wo:

wo
k ≡ wo, k = 1, 2, . . . ,N (1.73)

The case where the individual costs are only convex and need not be strongly convex
is discussed in [5, 1, 42]; most of the results and conclusions continue to hold but
the derivations become more technical. Likewise, the case in which the individual
costs need not share minimizers is discussed in these references. In that case, as was
already shown in [65], the iterates wk,i by the individual agents will not approach

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 35 — #35 i
i

i
i

i
i

1.4 Synchronous Multi-Agent Adaptation and Learning 35

the minimizer wo of (1.56), but rather the minimizer w? of a weighted aggregate
function with some positive scaling weights {qk}. This function was defined in Eq.
(57b) of [1]. It was also explained in [1] how this convergence property adds a
useful degree of freedom to the operation of the network, and how it can be exploited
advantageously to steer the network to converge to desirable limit points, including to
wo, through the selection of the combination policy A (which determines the scaling
weights {qk} in the weighted aggregate cost).

It is, nevertheless, sufficient for the purposes of this chapter to continue with the
case (1.73). There are many important situations in practice where the minimizers
of individual costs coincide with each other. For instance, examples abound where
agents need to work cooperatively to attain a common objective such as tracking a
target, locating a food source, or evading a predator (see, e.g., [82, 83, 6]). This
scenario is also common in machine learning problems [31, 32, 84, 85, 86, 87] when
data samples at the various agents are generated by a common distribution parame-
terized by some vector, wo. One such situation is illustrated in the next example.

Example 13 (Mean-square-error (MSE) networks). Consider the same setting of Example 3 except that
we now have N agents observing streaming data {dk(i),uk,i} that satisfy the regression model (1.13a) with
regression covariance matrices Ru,k = E uT

k,iuk,i > 0 and with the same unknown wo, i.e.,

dk(i) = uk,iwo + vk(i) (1.74a)

The individual mean-square-error costs are defined by

Jk(w) = E (dk(i) − uk,iw)2 (1.74b)

and are strongly convex in this case, with the minimizer of each Jk(w) occurring at

wo
k

∆
= R−1

u,krdu,k , k = 1, 2, . . . ,N (1.74c)

If we multiply both sides of (1.74a) by uT
k,i from the left, and take expectations, we find that wo satisfies

rdu,k = Ru,kwo (1.75)

This relation shows that the unknown wo from (1.74a) satisfies the same expression as wo
k in (1.74c), for

any k = 1, 2, . . . ,N, so that we must have wo = wo
k . Therefore, this example amounts to a situation where

all costs {Jk(w)} attain their minima at the same location, wo.
We shall use the network model of this example to illustrate other results in the chapter. For ease of

reference, we shall refer to strongly-connected networks with agents receiving data according to model
(1.74a) and seeking to estimate wo by adopting the mean-square-error costs Jk(w) defined above, as mean-
square-error (MSE) networks. We assume for these networks that the measurement noise process vk(i) is
temporally white and independent over space so that

E vk(i)v`(j) = σ2
v,kδk,`δi, j (1.76)

in terms of the Kronecker delta δk,`. Likewise, we assume that the regression data uk,i is temporally white
and independent over space so that

E uT
k,iu`, j = Ru,kδk,`δi, j (1.77)

Moreover, the measurement noise vk(i) and the regression data u`, j are independent of each other for all
k, `, i, j. These statistical conditions help facilitate the analysis of such networks.

�

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 36 — #36 i
i

i
i

i
i

36 CHAPTER 1 Asynchronous Adaptive Networks

In the next subsections we list synchronous distributed algorithms of the consen-
sus and diffusion types for the optimization of Jglob(w). We only list the algorithms
here; for motivation and justifications, the reader may refer to the treatments in [1, 5].
Moreover, Sec. V.D of [1] provides commentary on several other related works in
the literature, in addition to the history and evolution of the consensus and diffusion
strategies.

1.4.3 SYNCHRONOUS CONSENSUS STRATEGY
Let wk,i denote the iterate that is available at agent k at iteration i; this iterate serves
as the estimate for wo. The consensus iteration at each agent k is described by the
following construction (see, e.g., [11, 15, 36, 69, 71, 77]):

wk,i =
∑
`∈Nk

a`k w`,i−1 − µk ∇̂wT Jk(wk,i−1) (1.78)

where the {µk} are individual step-size parameters, and where the combination coef-
ficients {a`k} that appear in (1.78) are nonnegative scalars that are required to satisfy
the following conditions for each agent k = 1, 2, . . . ,N:

a`k ≥ 0,
N∑
`=1

a`k = 1, a`k = 0 if ` < Nk (1.79a)

Condition (1.79a) implies that the combination matrix A = [a`k] satisfies

AT1 = 1 (1.79b)

where 1 denotes the vector with all entries equal to one. We say that A is left-
stochastic. One useful property of left-stochastic matrices is that their spectral radius
is equal to one [7, 81, 88, 89, 90]:

ρ(A) = 1 (1.79c)

An equivalent representation that is useful for later analysis is to rewrite the consen-
sus iteration (1.78) as shown in the following listing, where the intermediate iterate
that results from the neighborhood combination is denoted by ψk,i−1. Observe that
the gradient vector in the consensus implementation (1.80) is evaluated at wk,i−1 and
not ψk,i−1.

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 37 — #37 i
i

i
i

i
i

1.4 Synchronous Multi-Agent Adaptation and Learning 37

Consensus strategy for distributed adaptation
for each time instant i ≥ 0:

each agent k = 1, 2, . . . ,N performs the update:
ψk,i−1 =

∑
`∈Nk

a`k w`,i−1

wk,i = ψk,i−1 − µk ∇̂wT Jk
(
wk,i−1

)
end

(1.80)

We remark that one way to motivate the consensus update (1.78) is to start from
the non-cooperative step (1.68a) and replace the first iterate wk,i−1 by the convex
combination used in (1.78).

Example 14 (Consensus LMS networks). For the MSE network of Example 13, the consensus strategy
reduces to: 

ψk,i−1 =
∑
`∈Nk

a`k w`,i−1

wk,i = ψk,i−1 + 2µkuT
k,i[dk(i) − uk,iwk,i−1]

(1.81)

�

1.4.4 SYNCHRONOUS DIFFUSION STRATEGIES
There is an inherent asymmetry in the consensus construction. Observe from the
computation of wk,i in (1.80) that the update starts from ψk,i−1 and corrects it by the
approximate gradient vector evaluated at wk,i−1 (and not at ψk,i−1). This asymmetry
will be shown later, e.g., in Example 25, to be problematic when the consensus
strategy is used for adaptation and learning over networks. This is because the asym-
metry can cause an unstable growth in the state of the network [80] — see also the
explanations in [1] and [5][Sec. 10.6]. Diffusion strategies remove the asymmetry
problem.

Combine-then-Adapt (CTA) Diffusion. In the CTA formulation of the diffusion strat-
egy, the same iterate ψk,i−1 is used to compute wk,i, thus leading to description (1.82a)
where the gradient vector is evaluated at ψk,i−1 as well. The reason for the name
“Combine-then-Adapt” is that the first step in (1.82a) involves a combination step,
while the second step involves an adaptation step. The reason for the qualification
“diffusion” is that the use of ψk,i−1 to evaluate the gradient vector allows information
to diffuse more thoroughly through the network. This is because information is not
only being diffused through the aggregation of the neighborhood iterates, but also
through the evaluation of the gradient vector at the aggregate state value.

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 38 — #38 i
i

i
i

i
i

38 CHAPTER 1 Asynchronous Adaptive Networks

Diffusion strategy for distributed adaptation (CTA)
for each time instant i ≥ 0:

each agent k = 1, 2, . . . ,N performs the update:
ψk,i−1 =

∑
`∈Nk

a`k w`,i−1

wk,i = ψk,i−1 − µk ∇̂wT Jk

(
ψk,i−1

)
end

(1.82a)

Adapt-then-Combine (ATC) Diffusion. A similar implementation can be obtained by
switching the order of the combination and adaptation steps in (1.82a), as shown in
the listing (1.82b). The structure of the CTA and ATC strategies are fundamentally
identical: the difference lies in which variable we choose to correspond to the up-
dated iterate wk,i. In ATC, we choose the result of the combination step to be wk,i,
whereas in CTA we choose the result of the adaptation step to be wk,i.

Diffusion strategy for distributed adaptation (ATC)
for each time instant i ≥ 0:

each agent k = 1, 2, . . . ,N performs the update:
ψk,i = wk,i−1 − µk ∇̂wT Jk(wk,i−1)

wk,i =
∑
`∈Nk

a`k ψ`,i

end

(1.82b)

One main motivation for the introduction of the diffusion strategies (1.82a) and
(1.82b) is the fact that they enable single time-scale distributed learning from stream-
ing data under constant step-size adaptation and in a stable manner [2, 65, 78, 79]
and [91]–[95] — see also [5][Chs. 9–11]; the diffusion strategies further allow A to
be left-stochastic, which permit larger modes of cooperation than doubly-stochastic
policies. The CTA diffusion strategy (1.83a) was first introduced for mean-square-
error estimation problems in [78, 91, 92, 93]. The ATC diffusion structure (1.83b),
with adaptation preceding combination, appeared in the work [96] on adaptive dis-
tributed least-squares schemes and also in the works [79, 95, 97, 98] on distributed
mean-square-error and state-space estimation methods. The CTA structure (1.82a)
with an iteration dependent step-size that decays to zero, µ(i)→ 0, was employed
in [13, 99, 100] to solve distributed optimization problems that require all agents to
reach agreement. The ATC form (1.82b), also with an iteration dependent sequence
µ(i) that decays to zero, was employed in [101, 102] to ensure almost-sure conver-
gence and agreement among agents.

Example 15 (Diffusion LMS networks). For the MSE network of Example 13, the ATC and CTA diffu-

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 39 — #39 i
i

i
i

i
i

1.5 Asynchronous Multi-Agent Adaptation and Learning 39

sion strategies reduce to: 
ψk,i−1 =

∑
`∈Nk

a`k w`,i−1 (CTA diffusion)

wk,i = ψk,i−1 + 2µkuT
k,i

[
dk(i) − uk,iψk,i−1

] (1.83a)

and 
ψk,i = wk,i−1 + 2µkuT

k,i
[
dk(i) − uk,iwk,i−1

]
wk,i =

∑
`∈Nk

a`k ψ`,i (ATC diffusion) (1.83b)

�

Example 16 (Diffusion logistic regression). We revisit the pattern classification problem from Example
2, where we consider a collection of N networked agents cooperating with each other to solve the logistic
regression problem. Each agent receives streaming data {γk(i), hk,i}, where the variable γk(i) assumes
the values ±1 and designates the class that the feature vector hk,i belongs to. The objective is to use the
training data to determine the vector wo that minimizes the cost

Jk(w) ∆
=

ρ

2
‖w‖2 + E

{
ln

[
1 + e−γk(i)hT

k,iw
]}

(1.84)

under the assumption of joint wide-sense stationarity over the random data. It is straightforward to verify
that the ATC diffusion strategy (1.82b) reduces to the following form in this case:

ψk,i = (1 − ρµk)wk,i−1 + µk

 γk(i)

1 + eγk(i)hT
k,iwk,i−1

 hk,i

wk,i =
∑
`∈Nk

a`k ψ`,i
(1.85)

�

1.5 ASYNCHRONOUS MULTI-AGENT ADAPTATION
AND LEARNING

There are various ways by which asynchronous events can be introduced into the
operation of a distributed strategy. Without loss in generality, we illustrate the model
for asynchronous operation by describing it for the ATC diffusion strategy (1.82b);
similar constructions apply to CTA diffusion (1.82a) and consensus (1.80).

1.5.1 ASYNCHRONOUS MODEL
In a first instance, we model the step-size parameters as random variables and replace
(1.82b) by: 

ψk,i = wk,i−1 − µk(i) ∇̂wT Jk(wk,i−1)

wk,i =
∑
`∈Nk

a`k ψ`,i
(1.86)

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 40 — #40 i
i

i
i

i
i

40 CHAPTER 1 Asynchronous Adaptive Networks

In this model, the neighborhoods and the network topology remain fixed and only the
µk(i) assume random values. The step-sizes can vary across the agents and, therefore,
their means and variances become agent-dependent. Moreover, the step-sizes across
agents can be correlated with each other. We therefore denote the first and second-
order moments of the step-size parameters by:

µ̄k
∆
= Eµk(i) (1.87a)

σ2
µ,k

∆
= E (µk(i) − µ̄k)2 (1.87b)

cµ,k`
∆
= E (µk(i) − µ̄k)(µ`(i) − µ̄`) (1.87c)

When ` = k, the scalar cµ,kk coincides with the variance of µk(i), i.e., cµ,kk = σ2
µ,k ≥ 0.

On the other hand, if the step-sizes across the agents happen to be uncorrelated, then
cµ,k` = 0 for k , `.

More broadly, we can allow for random variations in the neighborhoods (and,
hence, in the network structure), and random variations in the combination coeffi-
cients as well. We capture this more general asynchronous implementation by writ-
ing:


ψk,i = wk,i−1 − µk(i)∇̂wT Jk(wk,i−1)

wk,i =
∑
`∈N k,i

a`k(i) ψ`,i (1.88)

where the combination coefficients {a` k(i)} are now random and, moreover, the sym-
bol N k,i denotes the randomly-changing neighborhood of agent k at time i. These
neighborhoods become random because the random variations in the combination
coefficients can turn links on and off depending on the values of the {a`,k(i)}. We
continue to require the combination coefficients {a`k(i)} to satisfy the same structural
constraint as given before by (1.79a), i.e.,

∑
`∈N k,i

a`k(i) = 1, and

a`k(i) > 0, if ` ∈ N k,i

a`k(i) = 0, otherwise
(1.89)

Since these coefficients are now random, we denote their first and second-order mo-
ments by:

ā`k
∆
= E a`k(i) (1.90a)

σ2
a,`k

∆
= E (a`k(i) − ā`k)2 (1.90b)

ca,`k,nm
∆
= E (a`k(i) − ā`k)(anm(i) − ānm) (1.90c)

When ` = n and k = m, the scalar ca,`k,nm coincides with the variance of a`k(i), i.e.,
ca,`k,nm = σ2

a,`k ≥ 0.

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 41 — #41 i
i

i
i

i
i

1.5 Asynchronous Multi-Agent Adaptation and Learning 41

Example 17 (Asynchronous diffusion LMS networks). For the MSE network of Example 13, the ATC
diffusion strategy (1.86) with random update reduces to

ψk,i = wk,i−1 + 2µk(i)uT
k,i

[
dk(i) − uk,iwk,i−1

]
wk,i =

∑
`∈Nk

a`k ψ`,i (diffusion with random updates) (1.91a)

whereas the asynchronous ATC diffusion strategy (1.88) reduces to:
ψk,i = wk,i−1 + 2µk(i)uT

k,i
[
dk(i) − uk,iwk,i−1

]
wk,i =

∑
`∈N k,i

a`k(i) ψ`,i (asynchronous diffusion) (1.91b)

We can view implementation (1.91a) as a special case of the asynchronous update (1.91b) when the vari-
ances of the random combination coefficients {a`k(i)} are set to zero.

�

Example 18 (Asynchronous consensus LMS networks). Similarly, for the same MSE network of Ex-
ample 13, the asynchronous consensus strategy is given by

ψk,i−1 =
∑

`∈N k,i

a`k(i) w`,i−1

wk,i = ψk,i−1 + 2µk(i)uT
k,i[dk(i) − uk,iwk,i−1]

(1.92)

�

1.5.2 MEAN GRAPH
We refer to the topology that corresponds to the average combination coefficients
{ā`k} as the mean graph, which is fixed over time. For each agent k, the neighborhood
defined by the mean graph is denoted by Nk. It is straightforward to verify that the
mean combination coefficients ā`k satisfy the following constraints over the mean
graph (compare with (1.79a) and (1.89)):

∑
`∈Nk

ā`k = 1, and

ā`k > 0, if ` ∈ Nk

ā`k = 0, otherwise
(1.93)

One example of a random network with two equally probable realizations and its
mean graph is shown in Fig. 1.6 [2]. The letter ω is used to index the sample space
of the random matrix Ai.

There is one useful result that relates the random neighborhoods {N k,i} from
(1.88) to the neighborhoods {Nk} from the mean graph. It is not difficult to verify that
Nk is equal to the union of all possible realizations for the random neighborhoods
N k,i; this property is already illustrated by the example of Fig. 1.6:

Nk =
⋃
ω∈Ω

N k,i(ω) (1.94)

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 42 — #42 i
i

i
i

i
i

42 CHAPTER 1 Asynchronous Adaptive Networks

FIGURE 1.6 Mean graph.
The first two rows show two equally probable realizations with the respective neighborhoods.
The last row shows the resulting mean graph. Source: This is a modified version of a Figure
extracted with permission from [2].

for any k, where Ω denotes the sample space forN k,i.

1.5.3 RANDOM COMBINATION POLICY
The first and second-order moments of the combination coefficients will play an im-
portant role in characterizing the stability and mean-square-error performance of the
asynchronous network (1.88). We collect these moments in matrix form as follows.
We first group the combination coefficients into a matrix:

Ai
∆
= [a`k(i)]N

`,k=1 (N × N) (1.95a)

The sequence {Ai, i ≥ 0} represents a stochastic process consisting of left-stochastic
random matrices whose entries satisfy the conditions in (1.89) at every time i. We
subsequently introduce the mean and Kronecker-covariance matrix of Ai and assume
these quantities are constant over time; we denote them by the N × N matrix Ā and

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 43 — #43 i
i

i
i

i
i

1.5 Asynchronous Multi-Agent Adaptation and Learning 43

the N2 × N2 matrix CA, respectively:

Ā ∆
= E Ai = [ā`k]N

`,k=1 (1.96a)

CA
∆
= E [(Ai − Ā) ⊗ (Ai − Ā)] (1.96b)

The matrix CA is not a conventional covariance matrix and is not necessarily Hermi-
tian. The reason for its introduction is because it captures the correlations of each
entry of Ai with all other entries in Ai. For example, for a network with N = 2
agents, the entries of Ā and CA will be given by:

Ā =

[
ā11 ā12
ā21 ā22

]
(1.97a)

CA =


ca,11,11 ca,11,12 ca,12,11 ca,12,12
ca,11,21 ca,11,22 ca,12,21 ca,12,22

ca,21,11 ca,21,12 ca,22,11 ca,22,12
ca,21,21 ca,21,22 ca,22,21 ca,22,22

 (1.97b)

We thus see that the (`, k)−th block of CA contains the covariance coefficients of a`k
with all other entries of Ai. One useful property of the matrices {Ā,CA} so defined is
that their elements are nonnegative and the following matrices are left-stochastic:

(
Ā
)T
1N = 1N , (Ā ⊗ Ā + CA)T1N2 = 1N2 (1.98)

Assumption 6 (Asynchronous network model). It is assumed that the random pro-
cesses {µk(i), a`m(j)} are independent of each other for all k, `,m, i, and j. They are
also independent of any other random variable in the learning algorithm.

�

The asynchronous network model described in this section covers many situa-
tions of practical interest. For example, we can choose the sample space for each
step-size µk(i) to be the binary choice {0, µ} to model random “on-off” behavior at
each agent k for the purpose of saving power, waiting for data, or even due to ran-
dom agent failures. Similarly, we can choose the sample space for each combination
coefficient a` k(i), ` ∈ Nk\{k}, to be {0, a`k} to model a random “on-off” status for the
link from agent ` to agent k at time i for the purpose of either saving communica-
tion cost or due to random link failures. Note that the convex constraint (1.89) can
always be satisfied by adjusting the value of akk(i) according to the realizations of
{a`k(i); ` ∈ N k,i\{k}}.

Example 19 (The spatially-uncorrelated model). A useful special case of the asynchronous network
model of this section is the spatially-uncorrelated model. In this case, at each iteration i, the random
step-sizes {µk(i); k = 1, 2, . . . ,N} are uncorrelated with each other across the network, and the random
combination coefficients {a`k(i); ` , k, k = 1, 2, . . . ,N} are also uncorrelated with each other across the

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 44 — #44 i
i

i
i

i
i

44 CHAPTER 1 Asynchronous Adaptive Networks

network. Then, it can be verified that the covariances {cµ,k`} in (1.87c) and {ca,`k,nm} in (1.90c) will be
fully determined by the variances {σ2

µ, σ
2
a,`k}:

cµ,kk = σ2
µ,k , cµ,k` = 0, k , ` (1.99a)

and

ca,`k,nm =



σ2
a,`k , if k = m, ` = n, ` ∈ Nk\{k}

−σ2
a,`k , if k = m = n, ` ∈ Nk\{k}

−σ2
a,nk , if k = m = `, n ∈ Nk\{k}∑

j∈Nk\{k}

σ2
a, jk , if k = m = ` = n

0, otherwise

(1.99b)

�

1.5.4 PERRON VECTORS
Now that we introduced the network model, we can move on to examine the effect
of network cooperation on performance. Some interesting patterns of behavior arise
when agents cooperate to solve a global optimization problem in a distributed manner
from streaming data [1, 5]. For example, one interesting result established in [2, 3,
42, 65, 103] is that the effect of the network topology on performance is captured by
the Perron vector of the combination policy. This vector turns out to summarize the
influence of the topology on performance so much so that different topologies with
similar Perron vectors will end up delivering similar performance. We explained
the role of Perron vectors in the context of synchronous adaptation and learning in
[1, 5]. Here we focus on asynchronous networks. In this case, two Perron vectors
will be needed since the randomness in the combination policy is now represented
by two moment matrices, Ā and CA. In the synchronous case, only one Perron vector
was necessary since the combination policy was fixed and described by a matrix A.
Although we are focusing on the asynchronous case in the sequel, we will be able to
recover results for synchronous networks as special cases.

Let us first recall the definition of Perron vectors for synchronous networks, say,
of the form described by (1.82b) with combination policy A. We assume the network
is strongly-connected. In this case, the left-stochastic matrix A will be primitive. For
such primitive matrices, it follows from the Perron-Frobenius Theorem [81] that: (a)
the matrix A will have a single eigenvalue at one; (b) all other eigenvalues of A will
be strictly inside the unit circle so that ρ(A) = 1; and (c) with proper sign scaling,
all entries of the right-eigenvector of A corresponding to the single eigenvalue at one
will be positive. Let p denote this right-eigenvector with its entries {pk} normalized
to add up to one, i.e.,

Ap = p, 1T p = 1, pk > 0, k = 1, 2, . . . ,N (1.100)

We refer to p as the Perron eigenvector of A. It was explained in [1, 5] how the
entries of this vector determine the mean-square-error performance and convergence

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 45 — #45 i
i

i
i

i
i

1.5 Asynchronous Multi-Agent Adaptation and Learning 45

rate of the network; these results will be revisited further ahead when we recover
them as special cases of the asynchronous results.

On the other hand, for an asynchronous implementation, the individual realiza-
tions of the random combination matrix Ai in (1.88) need not be primitive. In this
context, we will require a form of primitiveness to hold on average as follows.

Definition 1 (Strongly-connected asynchronous model). We say that an asyn-
chronous model with random combination coefficients {a`k(i)} is strongly-connected
if the Kronecker-covariance matrix given by Ā ⊗ Ā + CA is primitive.

�

Observe that if we set Ā = A and CA = 0, then we recover the condition for strong-
connectedness in the synchronous case, namely, that A should be primitive.

Definition 1 means that the directed graph (digraph) associated with the matrix
Ā ⊗ Ā + CA is strongly-connected (e.g., [89, pp. 30,34] and [5]). It is straightforward
to check from the definition of CA in (1.96b) that

Ā ⊗ Ā + CA = E (Ai ⊗ Ai) (1.101)

so that the digraph associated with Ā ⊗ Ā + CA is the union of all possible digraphs
associated with the realizations of Ai ⊗ Ai [104, p. 29]. Therefore, as explained in
[2, 3, 4], definition 1 amounts to an assumption that the union of all possible digraphs
associated with the realizations of Ai ⊗ Ai is strongly-connected. As illustrated in
Fig. 1.7, this condition still allows individual digraphs associated with realizations
of Ai to be weakly-connected with or without self-loops or even to be disconnected
[3].

It follows from property (1.98) and Definition 1, the matrix Ā ⊗ Ā + CA is left-
stochastic and primitive. It can be verified that mean matrix Ā is also primitive if
Ā ⊗ Ā + CA is primitive (although the converse is not true). Therefore, the matrix Ā
is both left-stochastic and primitive. We denote the Perron eigenvector of Ā ⊗ Ā + CA

by pc ∈ IRN2×1, which satisfies:

(Ā ⊗ Ā + CA)pc = pc, pT
c1 = 1 (1.102a)

Likewise, we denote the Perron eigenvector of Ā by p̄ ∈ IRN×1, which satisfies:

Āp̄ = p̄, p̄T1 = 1 (1.102b)

Observe that if we set CA = 0 and Ā = A, then we recover the synchronous case
information, namely, p̄ = p and pc = p ⊗ p.

The entries of the Perron vectors {pc, p̄} are related to each other, as illustrated by
the following explanation (proofs appear in [3][App. VII]). Since the vector pc is of

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 46 — #46 i
i

i
i

i
i

46 CHAPTER 1 Asynchronous Adaptive Networks

FIGURE 1.7 Digraphs.
The combination policy Ai has two equally probable realizations in this example, denoted by
{Ai(ω1), Ai(ω2)}. Observe that neither of the digraphs Ai(ω1) ⊗ Ai(ω1) or Ai(ω2) ⊗ Ai(ω2) is
strongly-connected due to the existence of the source and sink nodes. However, the digraph
associated with E (Ai ⊗ Ai), which is the union of the first two digraphs, is strongly-connected,
where information can flow in any direction through the network. Source: This is a modified
version of a Figure extracted with permission from [3].

dimension N2 × 1, we partition it into N sub-vectors of dimension N × 1 each:

pc
∆
= col{p1, p2, . . . , pN} (1.103a)

where pk denotes the k-th sub-vector. We construct an N × N matrix Pc from these
sub-vectors:

Pc
∆
= [p1 p2 . . . pN] =

[
pc,`k

]N
k,`=1 (1.103b)

We use p`k to denote the (`, k)-th element of matrix Pc, which is equal to the `-th
element of pk. It can be verified that the matrix Pc in (1.103b) is symmetric positive
semi-definite and it satisfies

Pc1 = p̄, PT
c = Pc, Pc ≥ 0 (1.103c)

where p̄ is the Perron eigenvector in (1.102b). We can further establish the following

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 47 — #47 i
i

i
i

i
i

1.6 Asynchronous Network Performance 47

useful relations:

pc,`k = pc,k`,

N∑
k=1

pc,`k = p̄`,
N∑
`=1

pc,`k = p̄k (1.103d)

We can also verify that the matrix difference

Cc
∆
= Pc − p̄p̄T, CT

c = Cc, Cc ≥ 0 (1.103e)

is symmetric, positive semi-definite, and satisfies Cc1 = 0. Moreover, it is straight-
forward to verify that

cc,kk = pc,kk − p̄2
k ≥ 0 (1.104)

where cc,kk denotes the (k, k)-th entry in Cc.

1.6 ASYNCHRONOUS NETWORK PERFORMANCE
We now comment on the performance of asynchronous networks and compare their
metrics against both non-cooperative and centralized strategies.

1.6.1 MSD PERFORMANCE
We denote the MSD performance of the individual agents and the average MSD
performance across the network by:

MSDdist,k
∆
= lim

i→∞
E ‖w̃k,i‖

2 (1.105a)

MSDdist,av
∆
=

1
N

N∑
k=1

MSDdist,k (1.105b)

where the error vectors are measured relative to the global optimizer, wo. We further
denote the gradient noise process at the individual agents by

sk,i(w) ∆
= ∇̂wT Jk(w) − ∇wT Jk(w) (1.106a)

and define

Hk
∆
= ∇2

w Jk(wo) (1.106b)

Rs,k
∆
= lim

i→∞
E

[
sk,i(wo)sT

k,i(w
o) |F i−1

]
(1.106c)

where F i−1 now represents the collection of all random events generated by the iter-
ates from across all agents, {wk, j, k = 1, 2, . . . ,N}, up to time i − 1:

F i−1
∆
= filtration{wk,−1,wk,0,wk,1, . . . ,wk,i−1, all k} (1.106d)

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 48 — #48 i
i

i
i

i
i

48 CHAPTER 1 Asynchronous Adaptive Networks

It is stated later in (1.149a), under some assumptions on the gradient noise processes
(1.106a), that for strongly-connected asynchronous diffusion networks of the form
(1.86), and for sufficiently small step-sizes µx [3, 5]:

MSDasyn
dist,k ≈ MSDasyn

dist,av ≈
1
2

Tr


 N∑

k=1

µ̄k p̄kHk

−1  N∑
k=1

(µ̄2
k + σ2

µ,k)pc,kkRs,k


 (1.107)

The same result holds for asynchronous consensus and CTA diffusion strategies.
Observe from (1.107) the interesting conclusion that the distributed strategy is able
to equalize the MSD performance across all agents for sufficiently small step-sizes.
It is also instructive to compare expression (1.149a) with (1.63) and (1.67) in the
centralized case. Observe how cooperation among agents leads to the appearance of
the scaling coefficients {p̄k, pc,kk}; these factors are determined by Ā and CA.

Note further that if we set µ̄k = µ, σ2
µ,k = 0, p̄k = pk and pc,kk = p2

k , then we re-
cover the MSD expression for synchronous distributed strategies:

MSDsync
dist,k ≈ MSDsync

dist,av ≈
1
2

Tr


 N∑

k=1

µk pkHk

−1  N∑
k=1

µ2
k p2

kRs,k


 (1.108)

This result agrees with expression (62) from [1].

Example 20 (MSE networks with random updates). We continue with the setting of Example 13, which
deals with MSE networks. We assume the first and second-order moments of the random step-sizes are
uniform, i.e., µ̄k ≡ µ̄ and cµ,kk ≡ σ

2
µ, and also assume uniform regression covariance matrices, i.e., Ru,k ≡

Ru for k = 1, 2, . . . ,N. It follows that Hk = 2Ru ≡ H and Rs,k = 4σ2
v,kRu. Substituting into (1.149a), and

assuming a fixed topology with fixed combination coefficients set to a`k , we conclude that the MSD
performance of the diffusion strategy (1.91a) with random updates is well approximated by:

MSDasyn,1
dist,k ≈ MSDasyn,1

dist,av ≈ µx M

 N∑
k=1

p2
kσ

2
v,k

 (1.109a)

where

µx = µ̄ +
σ2
µ

µ̄
(1.109b)

and pk is the k−th entry of the Perron vector p defined by (1.100).
If the combination matrix A happens to be doubly stochastic, then its Perron eigenvector becomes

p = 1/N. Substituting pk = 1/N into (1.109a) gives

MSDasyn,1
dist,k ≈ MSDasyn,1

dist,av ≈
µx M

N

 1
N

N∑
k=1

σ2
v,k

 (1.109c)

which agrees with the centralized performance (1.51b). In other words, the asynchronous diffusion strat-
egy is able to match the performance of the centralized solution for doubly stochastic combination policies,
when both implementations employ random updates. Since the centralized solution can improve the aver-
age MSD performance over non-cooperative networks, we further conclude that the diffusion strategy can
also exceed the average performance of non-cooperative networks.

�

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 49 — #49 i
i

i
i

i
i

1.7 Network Stability and Performance 49

Example 21 (Asynchronous MSE networks). We continue with the setting of Example 20 except that we
now employ the asynchronous LMS diffusion network (1.91b). Its MSD performance is well approximated
by:

MSDasyn
dist,k ≈ MSDasyn

dist,av ≈ µx M

 N∑
k=1

pc,kkσ
2
v,k

 (1.110a)

If the mean combination matrix Ā happens to be doubly stochastic, then its Perron eigenvector becomes
p̄ = 1/N. Substituting p̄k = 1/N into (1.109a), and using pc,kk = p̄2

k + cc,kk , where cc,kk is from (1.103e),
gives

MSDasyn
dist,k ≈ MSDasyn

dist,av ≈
µx M

N

 1
N

N∑
k=1

(1 + N2cc,kk)σ2
v,k

 (1.110b)

It is clear that if cc,kk = σ2
π,k , then the MSD performance in (1.110b) will agree with the centralized per-

formance (1.55a). In other words, the distributed diffusion strategy is able to match the performance of
the centralized solution.

�

1.7 NETWORK STABILITY AND PERFORMANCE
In this section, we examine more closely the performance and stability results that
were alluded to in the earlier sections. We first examine the consensus and diffusion
strategies in a unified manner, and subsequently focus on diffusion strategies due to
their enhanced stability properties, as the ensuing discussion will reveal.

1.7.1 MSE NETWORKS
We motivate the discussion by presenting first some illustrative examples with MSE
networks, which involve quadratic costs. Following the examples, we extend the
framework to more general costs.

Example 22 (Error dynamics over MSE networks). We consider the MSE network of Example 13,
which involves quadratic costs with a common minimizer, wo. The update equations for the non-
cooperative, consensus, and diffusion strategies are given by (1.68a), (1.81), and (1.83a)–(1.83b). We can
group these strategies into a single unifying description by considering the following structure in terms of
three sets of combination coefficients {ao,`k(i), a1,`k(i), a2,`k(i)}:

φk,i−1 =
∑

`∈N k,i

a1,`k(i)w`,i−1

ψk,i =
∑

`∈N k,i

ao,`k(i)φ`,i−1 + 2µk(i)uT
k,i

[
dk(i) − uk,iφk,i−1

]
wk,i =

∑
`∈N k,i

a2,`k(i)ψ`,i

(1.111)

In (1.111), the quantities {φk,i−1,ψk,i} denote M × 1 intermediate variables, while the nonnegative entries
of the N × N matrices Ao,i = [ao,`k(i)], A1,i = [a1,`k(i)], and A2,i = [a2,`k(i)] are assumed to satisfy the
same conditions (1.89). Any of the combination weights {ao,`k(i), a1,`k(i), a2,`k(i)} is zero whenever ` <

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 50 — #50 i
i

i
i

i
i

50 CHAPTER 1 Asynchronous Adaptive Networks

Nk,i. Different choices for {Ao,i, A1,i, A2,i}, including random and deterministic choices, correspond to
different strategies, as the following examples reveal:

non-cooperative: A1,i = Ao,i = A2,i = IN (1.112a)

consensus: Ao,i = Ai, A1,i = IN = A2,i (1.112b)

CTA diffusion: A1,i = Ai, A2,i = IN = Ao,i (1.112c)

ATC diffusion: A2,i = Ai, A1,i = IN = Ao,i (1.112d)

where Ai denotes some generic combination policy satisfying (1.89). We associate with each agent k the
following three errors:

w̃k,i
∆
= wo − wk,i (1.113a)

ψ̃k,i
∆
= wo − ψk,i (1.113b)

φ̃k,i−1
∆
= wo − φk,i−1 (1.113c)

which measure the deviations from the global minimizer, wo. Subtracting wo from both sides of the
equations in (1.111) we get

φ̃k,i−1 =
∑

`∈N k,i

a1,`k(i) w̃`,i−1

ψ̃k,i =
∑

`∈N k,i

ao,`k(i)φ̃`,i−1 − 2µk(i)uT
k,iuk,iφ̃k,i−1 − 2µk(i)uT

k,ivk(i)

w̃k,i =
∑

`∈N k,i

a2,`k(i) ψ̃`,i

(1.114a)

In a manner similar to (1.16a), the gradient noise process at each agent k is given by

sk,i(φk,i−1) = 2
(
Ru,k − uT

k,iuk,i
)
φ̃k,i−1 − 2uT

k,ivk(i) (1.114b)

In order to examine the evolution of the error dynamics across the network, we collect the error vectors
from all agents into N × 1 block error vectors (whose individual entries are of size M × 1 each):

w̃i
∆
=


w̃1,i
w̃2,i
.
.
.

w̃N,i

 , ψ̃i
∆
=


ψ̃1,i
ψ̃2,i
.
.
.

ψ̃N,i

 , φ̃i−1
∆
=


φ̃1,i−1
φ̃2,i−1
.
.
.

φ̃N,i−1

 (1.115a)

Motivated by the last term in the second equation in (1.114a), and by the gradient noise terms (1.114b),
we also introduce the following N × 1 column vectors whose entries are of size M × 1 each:

zi
∆
=


2uT

1,iv1(i)
2uT

2,iv2(i)
.
.
.

2uT
N,ivN (i)

 , si
∆
=


s1,i(φ1,i−1)
s2,i(φ2,i−1)

.

.

.

sN,i(φN,i−1)

 (1.115b)

We further introduce the Kronecker products

Ao,i
∆
= Ao,i ⊗ IM , A1,i

∆
= A1,i ⊗ IM , A2,i

∆
= A2,i ⊗ IM (1.116a)

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 51 — #51 i
i

i
i

i
i

1.7 Network Stability and Performance 51

and the following N × N block diagonal matrices, whose individual entries are of size M × M each:

Mi
∆
= diag{ µ1(i)IM , µ2(i)IM , . . . , µN (i)IM } (1.116b)

Ri
∆
= diag

{
2uT

1,iu1,i, 2uT
2,iu2,i, . . . , 2uT

N,iuN,i
}

(1.116c)

From (1.114a) we can then easily conclude that the block network variables satisfy the recursions:
φ̃i−1 = AT

1,iw̃i−1

ψ̃i =
(
AT

o,i − MiRi
)
φ̃i−1 − Mi zi

w̃i = AT
2,iψ̃i

(1.117a)

so that the network weight error vector, w̃i, evolves according to:

w̃i = AT
2,i

(
A

T
o,i −MiRi

)
A

T
1,iw̃i−1 − A

T
2,iMi zi (1.117b)

For comparison purposes, if each agent operates individually and uses the non-cooperative strategy
(1.68a), then the weight error vector would instead evolve according to the following recursion:

w̃i = (IMN −MiRi) w̃i−1 − Mi zi, i ≥ 0 (1.118)

where the matrices {Ao,i,A1,i,A2,i} do not appear any longer, and with a block diagonal coefficient matrix
(IMN −MiRi). It is also straightforward to verify that recursion (1.117b) can be equivalently rewritten in
the following form in terms of the gradient noise vector, si, defined by (1.115b):

w̃i = Bi w̃i−1 + AT
2,iMsi (1.119a)

where

Bi
∆
= A

T
2,i

(
A

T
o,i −MiR

)
A

T
1,i (1.119b)

R
∆
= ERi = diag{2Ru,1, 2Ru,2, . . . , 2Ru,N } (1.119c)

�

Example 23 (Mean-error behavior). We continue with the setting of Example 22. In mean-square-error
analysis, we are interested in examining how the quantities E w̃i and E ‖w̃i‖

2 evolve over time. If we refer
back to the data model described in Example 13, where the regression data {uk,i} were assumed to be
temporally white and independent over space, then the stochastic matrix Ri appearing in (1.117b)–(1.118)
is seen to be statistically independent of w̃i−1. We further assume that, in the unified formulation, the
entries of the combination policies {Ao,i, A1,i, A2,i} are independent of each other (as well as over time)
and of any other variable in the learning algorithm. Therefore, taking expectations of both sides of these
recursions, and invoking the fact that uk,i and vk(i) are also independent of each other and have zero means
(so that E zi = 0), we conclude that the mean-error vectors evolve according to the following recursions:

E w̃i = B̄
(
E w̃i−1

)
(distributed) (1.120a)

E w̃i =
(
IMN − M̄R

) (
E w̃i−1

)
(non-cooperative) (1.120b)

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 52 — #52 i
i

i
i

i
i

52 CHAPTER 1 Asynchronous Adaptive Networks

where

B̄
∆
= EBi = ĀT

2

(
ĀT

o − M̄R
)
ĀT

1 (1.121a)

M̄ = EMi = diag{ µ̄1IM , . . . , µ̄N IM } (1.121b)

Āo = EAo,i (1.121c)

Ā1 = EA1,i (1.121d)

Ā2 = EA2,i (1.121e)

The matrix B̄ controls the dynamics of the mean weight-error vector for the distributed strategies. Observe,
in particular, that B̄ reduces to the following forms for the various strategies (non-cooperative (1.68a),
consensus (1.81), and diffusion (1.83a)–(1.83b)):

B̄ncop = IMN − M̄R (1.122a)

B̄cons = ĀT − M̄R (1.122b)

B̄atc = ĀT
(
IMN − M̄R

)
(1.122c)

B̄cta =
(
IMN − M̄R

)
ĀT (1.122d)

where Ā = Ā ⊗ IM and Ā = E Ai. �

Example 24 (MSE networks with uniform agents). The results of Example 23 simplify when all agents
employ step-sizes with the same mean value, µ̄k ≡ µ̄, and observe regression data with the same covariance
matrix, Ru,k ≡ Ru [7, 80]. In this case, we can express M̄ and R from (1.152b) and (1.119c) in Kronecker
product form as follows:

M̄ = µ̄IN ⊗ IM , R = IN ⊗ 2Ru (1.123)

so that expressions (1.122a)–(1.122d) reduce to

B̄ncop = IN ⊗ (IM − 2µ̄Ru) (1.124a)

B̄cons = ĀT ⊗ IM − 2µ̄(IM ⊗ Ru) (1.124b)

B̄atc = ĀT ⊗ (IM − 2µ̄Ru) (1.124c)

B̄cta = ĀT ⊗ (IM − 2µ̄Ru) (1.124d)

Observe that B̄atc = B̄cta, so we denote these matrices by B̄diff . Using properties of the eigenvalues of
Kronecker products of matrices, it can be easily verified that the MN eigenvalues of the above B̄ matrices
are given by the following expressions in terms of the eigenvalues of the component matrices {Ā,Ru} for
k = 1, 2, . . .N and m = 1, 2, . . . ,M:

λ(B̄ncop) = 1 − 2µ̄λm(Ru) (1.125a)

λ(B̄cons) = λk(Ā) − 2µ̄λm(Ru) (1.125b)

λ(B̄diff) = λk(Ā)
[
1 − 2µ̄λm(Ru)

]
(1.125c)

�

Example 25 (Potential instability in consensus networks). Consensus strategies can become unstable
when used for adaptation purposes [80, 5]. This undesirable effect is already reflected in expressions
(1.125a)–(1.125c). In particular, observe that the eigenvalues of Ā appear multiplying (1 − 2µλm(Ru)) in
expression (1.125c) for diffusion. As such, and since ρ(Ā) = 1 for any left-stochastic matrix, we conclude

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 53 — #53 i
i

i
i

i
i

1.7 Network Stability and Performance 53

for this case of uniform agents that ρ(B̄diff) = ρ(B̄ncop). It follows that, regardless of the choice of the
mean combination policy Ā, the diffusion strategies will be stable in the mean (i.e., E w̃i will converge
asymptotically to zero) whenever the individual non-cooperative agents are stable in the mean:

individual agents stable =⇒ diffusion networks stable (1.126a)

The same conclusion is not true for consensus networks; the individual agents can be stable and yet
the consensus network can become unstable. This is because λk(Ā) appears as an additive (rather than
multiplicative) term in (1.125b) (see [6, 80, 5] for examples):

individual agents stable ; consensus networks stable (1.126b)

The fact that the combination matrix ĀT appears in an additive form in (1.122b) is the result of the
asymmetry that was mentioned earlier in the update equation for the consensus strategy. In contrast, the
update equations for the diffusion strategies lead to ĀT appearing in a multiplicative form in (1.122c)–
(1.122d). �

Example 26 (Useful stability result). It is observed from expressions (1.122c)–(1.122d) in the asyn-
chronous case, as well as from the corresponding expressions (81c)–(81d) in the synchronous case studied
in [1], that the mean stability of diffusion strategies usually involves examining the stability of a matrix
product of the form:

B
∆
= AT

2DA
T
1 (1.127)

whereD is a block diagonal symmetric matrix with blocks of size M × M, whileA1 andA2 are Kronecker
product matrices defined in terms of N × N left-stochastic matrices A1 and A2 asA1 = A1 ⊗ IM andA2 =

A2 ⊗ IM . For example, in (1.122c) we have A1 = IN , A2 = Ā,A1 = IMN ,A2 = Ā, andD = IMN −MR.
Matrix products of the form (1.127) are induced by the cooperation mechanism that is inherent to

diffusion learning. They have a useful property: it turns out that these matrix products are stable, regardless
of A1 and A2, as long as D is stable (i.e., has all its eigenvalues strictly inside the unit disc). This useful
result is easy to establish for symmetric left-stochastic matrices A1 and A2, as already noted in [78]. This
is because for symmetric matrices, their spectral radii coincide with their 2−induced norms and, hence,

ρ(A1) = ‖A1‖, ρ(A2) = ‖A2‖ (1.128)

Consequently, since we already know that ρ(A1) = ρ(A2) = 1, it follows that

ρ(B) ≤ ‖B‖

≤ ‖A2‖ · ‖D‖ · ‖A1‖

= ρ(A2) · ρ(D) · ρ(A1)

= ρ(A2) · ρ(D) · ρ(A1)

= ρ(D) (1.129)

which confirms that a stableD guarantees a stable B, regardless of A1 and A2.
The conclusion that B in (1.127) is stable whenever D is stable continues to hold even when the

matrices A1 and A2 are not necessarily symmetric. However, the argument leading to (1.129) will need
to be adjusted because property (1.128) need not hold anymore. This more general result was established
in [7, App. D] and also in [105, App. A, pp. 3471–3473], where it was shown that multiplication of a
symmetric block diagonal matrixD by any (not necessarily symmetric) left-stochastic Kronecker-product
transformations from left and right generally reduces the spectral radius, i.e.,

ρ
(
AT

2DA
T
1

)
≤ ρ(D) (1.130)

Accordingly, a stableD again ensures a stable B. This conclusion was established in the above references

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 54 — #54 i
i

i
i

i
i

54 CHAPTER 1 Asynchronous Adaptive Networks

by replacing the 2−induced norm used to arrive at (1.129) by a more convenient block-maximum norm,
denoted by ‖ · ‖b,∞ and defined as follows.

Let x = col{x1, x2, . . . , xN } denote an N × 1 block column vector whose individual entries are them-
selves vectors of size M × 1 each. Following [36, 106, 7], the block maximum norm of x is denoted by
‖x‖b,∞ and is defined as

‖x‖b,∞
∆
= max

1≤k≤N
‖xk‖ (1.131)

That is, ‖x‖b,∞ is equal to the largest Euclidean norm of its block components (this definition extends the
regular notion of the ∞−norm of a vector to block vectors). The vector norm (1.131) induces a block-
maximum matrix norm. Let A denote an arbitrary N × N block matrix with individual block entries of
size M × M each. Then, the block-maximum norm ofA is defined as

‖A‖b,∞
∆
= max

x,0

‖Ax‖b,∞
‖x‖b,∞

(1.132)

The block-maximum norm has several useful properties — see [7]. In particular, when A is N × N left-
stochastic andA = A ⊗ IM , then it can be verified that ‖AT‖b,∞ = 1. Likewise, whenD is block diagonal
and symmetric, then ‖D‖b,∞ = ρ(D). Consequently, repeating the argument leading to (1.129) and replac-
ing the 2−induced norm used there by the block-maximum norm we have

ρ(B) ≤ ‖B‖b,∞ ≤ ‖AT
2 ‖b,∞ · ‖D‖b,∞ · ‖A

T
1 ‖b,∞ = ρ(D) (1.133)

and we again conclude that a stable symmetricD guarantees a stable B for general left-stochastic matrices
A1 and A2 since, for symmetricD, it holds that ρ(D) = ‖D‖b,∞.

Remark 1. The same argument (1.133) can be used to relax the requirement of symmetry and stability
on the block diagonal matrix D. Actually, as long as ‖D‖b,∞ < 1, which is guaranteed by requiring the
block diagonal entries of D to have their 2−induced norms bounded by one, we can again conclude that
ρ(B) < 1 so that B is stable.

Remark 2. The validity of property (1.130) for general left-stochastic matrices was already noted and
exploited in earlier works, e.g., in Lemma 1 of [79] and in Lemma 2 of [125]. However, the statement of
Lemma 1 in [79] left out the qualification “diagonal” for the center matrix, and the norm ‖ · ‖ρ that was
used in the proof of the lemma in Appendix I of [79] should be replaced by the ‖ · ‖∞−norm. Although
these corrections were already noted in the references [7, 105], we restate below the correct form of
Lemma 1 from [79] for accuracy, and provide its adjusted proof using the current notation. That lemma
deals with left-stochastic matrices A1 and A2 prior to extension by Kronecker products. Its correct state-
ment should read as follows (the word “diagonal” is missing from the statement in [79]).

Restatement of Lemma 1 [79]: Let A1, A2, and D denote arbitrary N × N matrices, where A1 and
A2 have real non-negative entries, with columns adding up to one, i.e., 1TA1 = 1T, 1TA2 = 1T. Then,
the matrix B = AT

2 DAT
1 is stable for any choice of A1 and A2 if, and only if, the diagonal matrix D is stable.

Proof: One immediate derivation is to employ the∞−norm and to note that

‖AT
1 ‖∞ = 1 = ‖AT

2 ‖∞, ‖D‖∞ = ρ(D) (1.134)

and, hence,

ρ(B) ≤ ‖B‖∞ ≤ ‖AT
2 ‖∞ · ‖D‖∞ · ‖A

T
1 ‖∞ = ρ(D) (1.135)

It follows that a stable D guarantees a stable B. A second derivation that fixes the argument from Appendix
I of [79] relies on using the∞−norm instead of the ρ−norm used there. Thus, note that we can alternatively

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 55 — #55 i
i

i
i

i
i

1.7 Network Stability and Performance 55

argue that

‖Bi‖∞ ≤
(
‖AT

2 ‖∞
)i
· (‖D‖∞)i ·

(
‖AT

1 ‖∞
)i

= (ρ(D))i −→ 0, as i→ ∞ (1.136)

when D is stable. This completes the proof of Lemma 1 from [79].

Remark 3. These same arguments establish the validity of Lemma 2 from [125], which deals with a
special case involving a matrix of the form B = AT

2D using the current notation (the matrix in [125] is
denoted by F = CTM with B ← F , A2 ← C, and D ←M; moreover, the matrix M is now generally
non-symmetric but still block diagonal with stable entries of the formMkk = (I − PkS k)F for some ma-
trices {Pk , S k , F} defined in [125]. When ‖Mkk‖2 < 1, these block diagonal entries will have 2−induced
norms smaller than one so that ‖D‖b,∞ < 1. Again, the ρ−norm used in the proof of Lemma 2 in [125]
should be replaced by the ‖ · ‖b,∞ norm and the argument adjusted as in (1.133) or, alternatively, we note
that

‖Bi‖b,∞ ≤
(
‖AT

2 ‖b,∞
)i
·
(
‖D‖b,∞

)i
−→ 0, as i→ ∞ (1.137)

�

1.7.2 DIFFUSION NETWORKS
Given the superior stability properties of diffusion strategies for adaptation and learn-
ing over networks, we continue our presentation by focusing on this class of algo-
rithms. The results in the previous section focus on MSE networks, which deal with
mean-square-error cost functions. We now consider networks with more general
costs, {Jk(w)}, and apply diffusion strategies to seek the global minimizer, wo, of the
aggregate cost function, Jglob(w), defined by (1.56). Without loss in generality, we
consider ATC diffusion implementations of the form (1.88):

ψk,i = wk,i−1 − µk(i)∇̂wT Jk(wk,i−1) (1.138a)

wk,i =
∑
`∈N k,i

a`k(i) ψ`,i (1.138b)

Similar conclusions will apply to CTA diffusion implementations.

Assumption 7 (Conditions on cost functions). The aggregate cost Jglob(w) in (1.56)
is twice differentiable and satisfies a condition similar to (1.9) in Assumption 1 for
some positive parameters νd ≤ δd. Moreover, all individual costs {Jk(w)} are as-
sumed to be strongly-convex with their global minimizers located at wo, as indicated
earlier by (1.73).

�

As explained before following (1.73), references [5, 1, 42] present results on the
case in which the individual costs are only convex and need not be strongly convex.
These references also discuss the case in which the individual costs need not share

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 56 — #56 i
i

i
i

i
i

56 CHAPTER 1 Asynchronous Adaptive Networks

minimizers. With each agent k in (1.88), we again associate a gradient noise vector:

sk,i(wk,i−1) ∆
= ∇̂wT Jk(wk,i−1) − ∇wT Jk(wk,i−1) (1.139)

Assumption 8 (Conditions on gradient noise). It is assumed that the first and
second-order conditional moments of the gradient noise components satisfy:

E
[
sk,i(wk,i−1) |F i−1

]
= 0 (1.140a)

E
[
sk,i(wk,i−1)sT

`,i(w`,i−1) |F i−1

]
= 0, ∀ k , ` (1.140b)

E
[
‖sk,i(wk,i−1)‖2 |F i−1

]
≤ β2

k ‖w̃k,i−1‖
2 + σ2

s,k (1.140c)

almost surely for some nonnegative scalars β2
k and σ2

s,k, and where F i−1 represents
the collection of all random events generated by the iterates from across all agents,
{w`, j, ` = 1, 2, . . . ,N}, up to time i − 1. Moreover, it is assumed that the limiting
covariance matrix of sk,i(wo) exists:

Rs,k
∆
= lim

i→∞
E

[
sk,i(wo)sT

k,i(w
o) |F i−1

]
(1.140d)

�

We collect the error vectors and gradient noises from across all agents into N × 1
block vectors, whose individual entries are of size M × 1 each:

w̃i
∆
=


w̃1,i
w̃2,i
...

w̃N,i

 , si
∆
=


s1,i
s2,i
...

sN,i

 (1.141)

and where we are dropping the argument wk,i−1 from the sk,i(·) for compactness of no-
tation. Likewise, we introduce the following N × N block diagonal matrices, whose
individual entries are of size M × M each:

Mi = diag{ µ1(i)IM , µ2(i)IM , . . . , µN(i)IM } (1.142a)
H i−1 = diag

{
H1,i−1, H2,i−1, . . . , HN,i−1

}
(1.142b)

where

Hk,i−1
∆
=

∫ 1

0
∇2

wJk(wo − tw̃k,i−1)dt (1.142c)

Now, in a manner similar to (1.29b), we can appeal to the mean-value theorem [35,
49, 5] to note that

∇wT Jk(wk,i−1) = −Hk,i−1w̃k,i−1 (1.143)

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 57 — #57 i
i

i
i

i
i

1.7 Network Stability and Performance 57

so that the approximate gradient vector can be expressed as:

∇̂wT Jk(wk,i−1) = −Hk,i−1w̃k,i−1 + sk,i(wk,i−1) (1.144)

Subtracting wo from both sides of (1.138a)–(1.138b), and using (1.144), we find that
the network error vector evolves according to the following stochastic recursion:

w̃i = Bi−1w̃i−1 + AT
iMisi (1.145a)

where

Bi−1
∆
= AT

i (INM −MiH i−1) (1.145b)

Recursion (1.145a) describes the evolution of the network error vector for general
convex costs, Jk(w), in a manner similar to recursion (1.119a) in the mean-square-
error case. However, recursion (1.145a) is more challenging to deal with because of
the presence of the random matrixH i−1; this matrix is replaced by the constant term
R in the earlier recursion (1.119a) because that example deals with MSE networks
where the individual costs, Jk(w), are quadratic in w and, therefore, their Hessian ma-
trices are constant and independent of w. In that case, each matrix Hk,i−1 in (1.142c)
will evaluate to 2Ru,k and the matrixH i−1 in (1.145b) will coincide with the matrix
R defined by (1.119c).

The next statement ascertains that sufficiently small step-sizes exist that guaran-
tee the MSE stability of the asynchronous diffusion strategy (1.138a)–(1.138b) [2, 5].

Lemma 4 (MSE network stability). Consider an asynchronous network of N in-
teracting agents running the ATC diffusion strategy (1.138a)–(1.138b). Assume the
conditions in Assumptions 6, 7, and 8 hold. Let

µx,max = max
1≤k≤N

{
µx,k

}
= max

1≤k≤N

µ̄k +
σ2
µ,k

µ̄k

 (1.146)

Then, there exists µo > 0 such that for all µx,max < µo:

lim sup
i→∞

E ‖w̃k,i‖
2 = O(µx,max) (1.147)

Proof. See App. IV of [2].
�

Result (1.147) shows that the MSD of the network is in the order of µx,max. There-
fore, sufficiently small step-sizes lead to sufficiently small MSDs. As was the case
with the discussion in subsection 1.2.7, we can also seek a closed-form expression
for the MSD performance of the asynchronous diffusion network and its agents. To
do that, we first introduce the analog of Assumption 4 for the network case.

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 58 — #58 i
i

i
i

i
i

58 CHAPTER 1 Asynchronous Adaptive Networks

Assumption 9 (Smoothness Conditions). The Hessian matrix of the individual cost
functions {Jk(w)}, and the noise covariance matrices defined for each agent in a man-
ner similar to (1.17a) and denoted by Rs,k,i(w), are assumed to be locally Lipschitz
continuous in a small neighborhood around wo:

‖∇2
w Jk(wo + δw) − ∇2

w Jk(wo)‖ ≤ τk,d‖δw‖ (1.148a)
‖Rs,k,i(wo + δw) − Rs,k,i(wo)‖ ≤ τk,s‖δw‖κ (1.148b)

for small perturbation ‖δw‖ ≤ rd and for some τk,d, τk,s ≥ 0 and 1 ≤ κ ≤ 2.
�

Lemma 5 (Asynchronous network MSD performance). Consider an asyn-
chronous network of N interacting agents running the asynchronous diffusion
strategy (1.138a)–(1.138b). Assume the conditions under Assumptions 6, 7, 8,
and 1 hold. Assume further that the step-size parameter µx,max is sufficiently small to
ensure mean-square stability, as already ascertained by Lemma 4. Then,

MSDasyn
diff,k ≈ MSDasyn

diff,av ≈
1
2

Tr


 N∑

k=1

µ̄k p̄kHk

−1  N∑
k=1

(µ̄2
k + σ2

µ,k)pc,kkRs,k


 (1.149a)

where Hk = ∇2
w Jk(wo). Moreover, for large enough i, the convergence rate towards

the above steady-state value is well approximated by the scalar:

α
asyn
dist = 1 − 2λmin

 N∑
k=1

µ̄k p̄kHk

 + O
(
µ1+1/N2

x,max

)
(1.149b)

Proof. See App. XII in [3].
�

Example 27 (Gaussian regression data). MSE performance expressions of the form (1.149a) are ac-
curate to first-order in the step-size parameters, i.e., they are on the order of O(µ̄k). The same is true of
expression (112) from [1] in the synchronous case. There are situations, however, where exact expressions
for the MSE performance can be derived for multi-agent networks. We illustrate this possibility here for
the case of MSE networks of the type described earlier in Example 13. We consider first synchronous
networks and comment later on how the results should be adjusted to handle asynchronous behavior.

We refer to the same setting of Example 9 from [1] where we have N agents observing streaming data
{dk(i),uk,i} that satisfy the regression model:

dk(i) = uk,iwo + vk(i) (1.150a)

We assume the regression vectors are zero-mean Gaussian-distributed with diagonal covariance matrices
denoted by Λk , say,

Ru,k = E uT
k,iuk,i

∆
= Λk > 0 (1.150b)

We further assume that the regression data is temporally white and independent over space so that

E uT
k,iu`, j = Ru,kδk,`δi, j (1.150c)

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 59 — #59 i
i

i
i

i
i

1.7 Network Stability and Performance 59

We also assume that the measurement noise process vk(i) is temporally white and independent over space
so that E vk(i)v`(j) = σ2

v,kδk,`δi, j in terms of the Kronecker delta sequence δm,n. Likewise, the measurement
noise vk(i) and the regression data u`, j are assumed to be independent of each other for all k, `, i, j.

The Gaussian assumption on the regression data is useful because, for this case, fourth-order moments
of the regression vectors can be evaluated in closed-form (and such fourth-order moment calculations will
arise in the process of determining closed-form expressions for the MSE). Specifically, for any matrix
Q ≥ 0 of size M × M, it holds for independent real-valued Gaussian regressors that [28] (there is a typo
in reproducing this expression in the second equation of App. II in [79]):

E uT
k,iuk,iQuT

`,iu`,i = Ru,kQRu,` + δk,`
{
Ru,kTr

(
QRu,k

)
+ Ru,kQRu,k

}
(1.150d)

We assume the network is running a diffusion strategy of the form:
φk,i−1 =

∑
`∈Nk

a1,`kw`,i−1

ψk,i = φk,i−1 + 2µkuT
k,i

[
dk(i) − uk,iφk,i−1

]
wk,i =

∑
`∈Nk

a2,`kψ`,i

(1.151a)

which includes both the ATC and CTA LMS diffusion forms as special cases. We know from (77b) in [1]
that the error network vector evolves according to the dynamics

w̃i = AT
2 (I −MRi)AT

1 w̃i−1 − A
T
2Mzi, i ≥ 0 (1.151b)

which is defined in terms of the following N × 1 column vectors whose entries are of size M × 1 each:

zi
∆
=


2uT

1,iv1(i)
2uT

2,iv2(i)
.
.
.

2uT
N,ivN (i)

 , si
∆
=


s1,i(φ1,i−1)
s2,i(φ2,i−1)

.

.

.

sN,i(φN,i−1)

 (1.151c)

Moreover,

A1
∆
= A1 ⊗ IM , A2

∆
= A2 ⊗ IM (1.152a)

while the quantities

M
∆
= diag{ µ1IM , µ2IM , . . . , µN IM } (1.152b)

Ri
∆
= diag

{
2uT

1,iu1,i, 2uT
2,iu2,i, . . . , 2uT

N,iuN,i
}

(1.152c)

R
∆
= ERi = diag

{
2Ru,1, 2Ru,2, . . . , 2Ru,N

}
(1.152d)

S
∆
= E zi zT

i = diag
{
4σ2

v,1Ru,1, . . . , 4σ2
v,NRu,N

}
(1.152e)

are N × N block diagonal matrices, whose individual entries are of size M × M each. Let Σ be any N × N
non-negative definite block matrix that we are free to choose, with blocks of size M × M. Computing
the Σ−weigthed squared norm of the error vector in (1.151b) under expectation gives (see the derivation
leading to (269) in [7] or (38)–(39) in [79]):

E ‖w̃i‖
2
Σ = E ‖w̃i−1‖

2
Σ′ + E

(
zT

i MA2ΣAT
2Mzi

)
(1.153a)

where the deterministic weighting matrix Σ′ is given by:

Σ′ = A1
{
A2ΣAT

2 −A2ΣAT
2MR − RMA2ΣAT

2 + E
(
RiMA2ΣAT

2MRi
)}
AT

1 (1.153b)

We can evaluate the last expectations in (1.153a)–(1.153b) in closed-form. But first we need to in-
troduce a convenient block-vector notation, denoted by bvec(·). Thus, given an N × N block matrix, with

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 60 — #60 i
i

i
i

i
i

60 CHAPTER 1 Asynchronous Adaptive Networks

blocks of size M × M each, say for N = 3,

X =


X11 X12 X13
X21 X22 X23
X31 X32 X33

 (1.154a)

its block vectorization is obtained as follows. We first vectorize each of the block entries and define the
column vector xk` = vec(Xk`); this operation stacks the columns of Xk` on top of each other. Subsequently,
the quantity bvec(X) is obtained by stacking the vectors {xk`} on top of each other:

bvec(X) ∆
= col{x11, x21, x31, x12, x22, x32, x13, x23, x33} (1.154b)

The following two useful properties can be easily verified for any block matrices {A, B,Σ} of compatible
dimensions [152, 153]:

bvec(AΣB) = (BT ⊗b A)bvec(Σ) (1.154c)

Tr(ATB) = (bvec(A))T bvec(B) (1.154d)

where the notation A ⊗b B denotes the block Kronecker product of two block matrices A and B (assumed
here to be both of size N × N with M × M blocks); the k`−th block of A ⊗b B has size NM2 × NM2 and
is given by [153]:

[A ⊗b B]k` =


Ak` ⊗ B11 Ak` ⊗ B12 . . . Ak` ⊗ B1N
Ak` ⊗ B21 Ak` ⊗ B22 . . . Ak` ⊗ B2N

.

.

.
.
.
.

. . .
.
.
.

Ak` ⊗ BN1 Ak` ⊗ BN2 . . . Ak` ⊗ BNN

 (1.154e)

in terms of the traditional Kronecker product operation. Using the block Kronecker properties (1.154c)–
(1.154d) we now find that the last expectation in (1.153a) is given by:

E
(
zT

i MA2ΣAT
2Mzi

)
= bTσ (1.155a)

σ
∆
= bvec(Σ) (1.155b)

b ∆
= (AT

2 ⊗b A
T
2)(M⊗bM)bvec(S) (1.155c)

This is the same expression (56) from [78] for the case of CTA diffusion, and the same expression (42)
from [79]) for CTA and ATC diffusion (except that this latter reference used the traditional vec(.) and
Kronecker notation ⊗ instead of bvec(.) and the block Kronecker notation ⊗b).

Let us now evaluate the last expectation in (1.153a). Let Q =MA2ΣAT
2M so that we can rewrite

more compactly:

K
∆
= E

(
RiMA2ΣAT

2MRi
)

= ERiQRi (1.156a)

The k`−th block entry in this matrix is given by

Kk` = 4 E uT
k,iuk,iQk`uT

`,iu`,i (1.156b)

in terms of the k`−th block of Q. Using property (1.150d) for Gaussian regressors, we get

Kk` = 4Ru,kQk`Ru,` + 4δk`
{
Ru,kTr

[
QkkRu,k

]
+ Ru,kQkkRu,k

}
(1.156c)

It is clear from the above expression that the matrixK has the following general form involving two block

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 61 — #61 i
i

i
i

i
i

1.7 Network Stability and Performance 61

diagonal matrices:

1
4
K = RQR + Z1 + Z2 (1.156d)

Z1
∆
= blkdiag

{
Ru,kQkkRu,k

}
(1.156e)

Z2
∆
= blkdiag

{
Ru,kTr

(
QkkRu,k

)}
(1.156f)

Introduce the block diagonal matrices (written for N = 3):

L1
∆
=



IM2

0
0

0
IM2

0
0

0
IM2


(1.157a)

L2
∆
=



λ1λ
T
1

0
0

0
λ2λ

T
2

0
0

0
λ3λ

T
3


(1.157b)

where λk = vec(Λk). Then, it can be verified that

bvec(Z1) = L1(R ⊗b R)bvec(Q) (1.158a)

bvec(Z2) = L2bvec(Q) (1.158b)

Noting that

bvec(Q) = (M⊗bM)(A2 ⊗b A2)σ (1.159)

we conclude that

bvec(K) = 4X(M⊗bM)(A2 ⊗b A2)σ (1.160a)

X
∆
= (I +L1)(R ⊗b R) +L2 (1.160b)

Note that the matrix X has the following block-diagonal structure:

X
∆
= diag {X1, X2, . . . ,XN } (1.160c)

Xk
∆
= diag

{
X

(1)
k , X(2)

k , . . . ,X(N)
k

}
(1.160d)

X
(`)
k =

{
Λk ⊗ Λ`, when k , `
λkλ

T
k + 2Λk ⊗ Λk , when k = `

(1.160e)

which is the same structure derived through equations (57)–(67) in [78]. Substituting (1.160a) into
(1.153b) and using again (1.154c)–(1.154d) we find that the block vectorized forms of the weighting
matrices {Σ,Σ′} are related via (the expression for F below fixes the typo in Eq. (44) from [79]; in the

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 62 — #62 i
i

i
i

i
i

62 CHAPTER 1 Asynchronous Adaptive Networks

derivation in this example we considered the special case in which Sm = I in (44) from [79]):

σ′ = Fσ (1.161a)

F
∆
= (A1 ⊗b A1) {I − (RM⊗b I) − (I ⊗b RM) + 4(M⊗bM)X} (A2 ⊗b A2) (1.161b)

This is the same expression for F in Eq. (69) from [78] for the case of CTA diffusion (where A2 = IN).
This is also the same expression for F in Eq. (41) from [79] for CTA and ATC diffusion (except that this
latter reference wrote ⊗ instead ⊗b). Substituting (1.155a) and the above expression for σ′ into (1.153a),
and using the compact notation ‖x‖2σ for ‖x‖2

Σ
, we rewrite (1.153a) in the form

E ‖w̃i‖
2
σ = E ‖w̃i−1‖

2
Fσ + bTσ (1.162)

In seady-state, as i→ ∞, the mean-square-error approaches

lim
i→∞

E ‖w̃i‖
2
(I−F)σ = bTσ (1.163)

As explained in Sec. 6.6 of [7], the network MSD can be assessed by selecting σ to satisfy

(I − F)σ =
1
N

bvec(INM) (1.164)

which leads to the desired expression

MSDsync
diff,av =

1
N

bT(I − F)−1bvec(INM) (1.165)

which is expression (105a) from [78].
To illustrate how these results are adjusted for asynchronous behavior, we consider the case in which

the step-size parameters {µk} in (1.151a) are replaced by random values {µk(i)}. We denote the mean and
variances of these random variables as follows:

µ̄k
∆
= E µk(i) (1.166a)

Mi
∆
= diag{µ1(i)IM ,µ2(i)IM , . . . ,µN (i)IM} (1.166b)

M̄
∆
= EMi (1.166c)

Cµ
∆
= E (Mi − M̄) ⊗b (Mi − M̄) (1.166d)

If we now repeat the same analysis, expressions (1.153a)–(1.153b) are replaced by

E ‖w̃i‖
2
Σ = E ‖w̃i−1‖

2
Σ′ + E

(
zT

iMiA2ΣAT
2Mi zi

)
(1.167a)

Σ′ = A1
{
A2ΣAT

2 −A2ΣAT
2M̄R − RM̄A2ΣAT

2 + E
(
RiMiA2ΣAT

2MiRi
)}
AT

1

(1.167b)

We can evaluate the last expectations in (1.167a)–(1.167b) as follows. First we have:

E
(
zT

iMiA2ΣAT
2Mi zi

)
= bTσ (1.168a)

where

b ∆
= E bvec

(
AT

2MiSMiA2
)

= (AT
2 ⊗b A

T
2)E (Mi ⊗bMi)bvec(S)

= (AT
2 ⊗b A

T
2)(Cµ + M̄ ⊗b M̄)bvec(S) (1.168b)

Second, we have:

bvec
{
E

(
RiMiA2ΣAT

2MiRi
)}

= E (Mi ⊗bMi)E (Ri ⊗b Ri) (A2 ⊗b A2)σ

= (Cµ + M̄ ⊗b M̄)E (Ri ⊗b Ri) (A2 ⊗b A2)σ (1.169)

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 63 — #63 i
i

i
i

i
i

1.8 Concluding Remarks 63

so that we replace the quantitiesM and (M⊗bM) in the expressions (1.155c) and (1.161b) for b and F
by M̄ and (Cµ + M̄ ⊗b M̄), respectively.

�

1.8 CONCLUDING REMARKS
This chapter provides an overview of asynchronous strategies for adaptation, learn-
ing, and optimization over networks including non-cooperative, centralized, consen-
sus, and diffusion strategies. Particular attention is given to the constant step-size
case in order to examine solutions that are able to adapt and learn continuously from
streaming data. The presentation complements the results from [1, 5]. We introduced
a fairly general model for asynchronous behavior that allows for random step-sizes,
link failures, random topology variations, and random combination coefficients. We
examined the mean-square-error performance and stability properties under asyn-
chronous events and recovered results for synchronous operation as a special case.
The results indicate that asynchronous networks are robust, resilient to failure, and
remain mean-square stable for sufficiently small step-sizes.

There are of course several other aspects of distributed strategies that are not
covered in this work. Comments on these aspects can be found in [1, 5, 7], including
issues related to (a) the noisy exchange of information over links (e.g., [7, 14] and
[108]–[112]); (b) the use of gossip strategies (e.g., [12, 15, 20, 22, 71, 113, 114]);
(c) the exploitation of sparsity constraints (e.g., [115]–[118]); (d) the solution of
constrained optimization problems (e.g., [13, 100, 119, 120, 121]); (e) the use of
distributed solutions of the recursive least-squares type (e.g., [7, 72, 98]); (f) the
development of distributed state-space solutions (e.g., [72, 97] and [122]–[128]);
(g) the study of incremental-based strategies (e.g., [129]–[141]); (h) the study of
distributed solutions under multi-task environments [142]–[146]; (i) the case of non-
smooth risk functions in the context of subgradient learning [24, 25, 69, 116]; and
(j) the incorporation of proximal operators into the distributed setting [147]–[151].

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 64 — #64 i
i

i
i

i
i

64 CHAPTER 1 Asynchronous Adaptive Networks

REFERENCES

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 65 — #65 i
i

i
i

i
i

[1] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE, vol. 102, no. 4, pp. 460–497,
April 2014.

[2] X. Zhao and A. H. Sayed, “Asynchronous adaptation and learning over networks — Part I:
Modeling and stability analysis,” IEEE Trans. Signal Processing, vol. 63, no. 4, pp. 811–826,
Feb. 2015.

[3] X. Zhao and A. H. Sayed, “Asynchronous adaptation and learning over networks – Part II:
Performance analysis,” IEEE Trans. Signal Processing, vol. 63, no. 4, pp. 827–842, Feb. 2015.

[4] X. Zhao and A. H. Sayed, “Asynchronous adaptation and learning over networks – Part III:
Comparison analysis,” IEEE Trans. Signal Processing, vol. 63, no. 4, pp. 843–858, Feb. 2015.

[5] A. H. Sayed, Adaptation, Learning, and Optimization over Networks, Foundations and Trends
in Machine Learning, vol. 7, issue 4–5, pp. 311–801, NOW Publishers, Boston-Delft, July
2014.

[6] A. H. Sayed, S-Y. Tu, J. Chen, X. Zhao, and Z. Towfic, “Diffusion strategies for adaptation and
learning over networks,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 155–171, May
2013.

[7] A. H. Sayed, “Diffusion adaptation over networks,” in E-Reference Signal Processing, vol. 3,
R. Chellapa and S. Theodoridis, Eds., pp. 323–454, Academic Press, 2014. Also available as
arXiv:1205.4220v1 [cs.MA], May 2012.

[8] P. Di Lorenzo, S. Barbarossa, and A. H. Sayed, “Bio-inspired decentralized radio access based
on swarming mechanisms over adaptive networks,” IEEE Trans. Signal Processing, vol. 61,
no. 12, pp. 3183–3197, June 2013.

[9] P. Chainais and C. Richard, “Learning a common dictionary over a sensor network,” Proc.
IEEE CAMSAP, pp. 1–5, Saint Martin, Dec. 2013.

[10] J. Chen, A. H. Sayed, and Z. Towfic, “Dictionary learning over distributed models,” IEEE
Trans. Signal Process. vol. 63, issue 4, pp. 1001–1016, February 2015.

[11] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deterministic and
stochastic gradient optimization algorithms,” IEEE Trans. Autom. Control, vol. 31, no. 9, pp.
803–812, Sep. 1986.

[12] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,” IEEE Trans.
on Information Theory, vol. 52, no. 6, pp. 2508–2530, Jun. 2006.

[13] K. Srivastava and A. Nedic, “Distributed asynchronous constrained stochastic optimization,”
IEEE J. Sel. Topics. Signal Process., vol. 5, no. 4, pp. 772–790, Aug. 2011.

[14] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in sensor networks: Link failures
and channel noise,” IEEE Trans. Signal Process., vol. 57, no. 1, pp. 355–369, Jan. 2009.

[15] S. Kar and J. M. F. Moura, “Convergence rate analysis of distributed gossip (linear parameter)
estimation: Fundamental limits and tradeoffs,” IEEE Journal on Selected Topics in Signal
Processing, vol. 5, no. 4, pp. 674–690, Aug. 2011.

[16] S. Kar and J. M. F. Moura, “Sensor networks with random links: Topology design for dis-
tributed consensus,” IEEE Trans. Signal Process., vol. 56, no. 7, pp. 3315–3326, July 2008.

[17] D. Jakovetic, J. Xavier, and J. M. F. Moura, “Weight optimization for consensus algorithms
with correlated switching topology,” IEEE Trans. Signal Process., vol. 58, no. 7, pp. 3788–
3801, July 2010.

[18] D. Jakovetic, J. Xavier, and J. M. F. Moura, “Cooperative convex optimization in networked
systems: Augmented Lagranian algorithms with directed Gossip communication,” IEEE Trans.
Signal Process., vol. 59, no. 8, pp. 3889–3902, Aug. 2011.

[19] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in sensor netowrks: Quantized
data and random link failures,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1383–1400,
Mar. 2010.

65

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 66 — #66 i
i

i
i

i
i

66 CHAPTER 1 Asynchronous Adaptive Networks

[20] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broadcast gossip algorithms for
consensus,” IEEE Trans. on Signal Processing, vol. 57, no. 7, pp. 2748–2761, July 2009.

[21] T. C. Aysal, A. D. Sarwate, and A. G. Dimakis, “Reaching consensus in wireless networks with
probabilistic broadcast,” in Proc. Allerton Conf. Commun., Control, Comput., Allerton House,
IL, Sept. and Oct. 2009, pp. 732–739.

[22] C. Lopes and A. H. Sayed, “Diffusion adaptive networks with changing topologies,” Proc.
IEEE ICASSP, pp. 3285–3288, Las Vegas, April 2008.

[23] N. Takahashi and I. Yamada, “Link probability control for probabilistic diffusion least-mean
squares over resource-constrained networks,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), pp. 3518–3521, Dallas, TX, Mar. 2010.

[24] B. Ying and A. H. Sayed, “Performance limits of stochastic sub-gradient learning, Part I: Single
agent case,” submitted for publication, Also available as arXiv1511.07902, April 2017.

[25] B. Ying and A. H. Sayed, “Performance limits of stochastic sub-gradient learning, Part II:
Multi-agent case,” submitted for publication, Also available as arXiv1704.06025, April 2017.

[26] S. Haykin, Adaptive Filter Theory, Prentice Hall, NJ, 2002.
[27] B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice Hall, NJ, 1985.
[28] A. H. Sayed, Adaptive Filters, Wiley, NJ, 2008.
[29] A. H. Sayed, Fundamentals of Adaptive Filtering, Wiley, NJ, 2003.
[30] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation, Prentice Hall, NJ, 2000.
[31] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2007.
[32] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th edition, Academic Press, 2008.
[33] D. W. Hosmer and S. Lemeshow, Applied Logistic Regression, 2nd edition, Wiley, NJ, 2000.
[34] B. T. Poljak and Y. Z. Tsypkin, “Pseudogradient adaptation and training algorithms,” Autom.

Remote Control, vol. 12, pp. 83–94, 1973.
[35] B. Poljak, Introduction to Optimization, Optimization Software, NY, 1987.
[36] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Meth-

ods, 1st edition, Athena Scientific, Singapore, 1997.
[37] Y. Z. Tsypkin, Adaptation and Learning in Automatic Systems, Academic Press, NY, 1971.
[38] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[39] D. Bertsekas, Convex Analysis and Optimization, Athena Scientific, 2003.
[40] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer Aca-

demic Publishers, 2004.
[41] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distributed optimization and

learning over networks,” IEEE Trans. Signal Processing, vol. 60, no. 8, pp. 4289–4305, Aug.
2012.

[42] J. Chen and A. H. Sayed, “On the learning behavior of adaptive networks — Part I: Transient
analysis,” IEEE Trans. Information Theory, vol. 61, no. 6, pp. 3487–3517, June 2015.

[43] B. Widrow and M. E. Hoff, Jr., “Adaptive switching circuits,” IRE WESCON Conv. Rec., Pt. 4,
pp. 96–104, 1960.

[44] D. P. Bertsekas and J. N. Tsitsiklis, “Gradient convergence in gradient methods with errors,”
SIAM J. Optim., vol. 10, no. 3, pp. 627–642, 2000.

[45] W. Feller, An Introduction to Probability Theory and Its Applications, vol. 2, Wiley, NY, 1971.
[46] G. J. Hahn and S. Shapiro, Statistical Models in Engineering, Wiley, NJ, 1994.
[47] M. Abramowitz and I. Stegun, Eds., Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables, Dover, NY, 1972.
[48] G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, Cam-

bridge, 1999.

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 67 — #67 i
i

i
i

i
i

1.8 Concluding Remarks 67

[49] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, 1976.
[50] N. R. Yousef and A. H. Sayed, “A unified approach to the steady-state and tracking analysis of

adaptive filters,” IEEE Trans. Signal Processing, vol. 49, no. 2, pp. 314–324, February 2001.
[51] T. Y. Al-Naffouri and A. H. Sayed, “Transient analysis of data-normalized adaptive fil-

ters,”IEEE Trans. Signal Processing, vol. 51, no. 3, pp. 639–652, Mar. 2003.
[52] J. Chen and A. H. Sayed, “On the learning behavior of adaptive networks — Part II: Perfor-

mance analysis,” IEEE Trans. Information Theory, vol. 61, no. 6, pp. 3518–3548, June 2015.
[53] A. Papoulis and S. U. Pilla, Probability, Random Variables, and Stochastic Processes,

McGraw-Hill, NY, 2002.
[54] R. Durret, Probability Theory and Examples, 2nd edition, Duxbury Press, 1996.
[55] R. M. Dudley, Real Analysis and Probability, 2nd edition, Cambridge University Press, 2003.
[56] B. Widrow, J. M. McCool, M. G. Larimore, and C. R. Johnson Jr., “Stationary and nonsta-

tionary learning characterisitcs of the LMS adaptive filter,” Proc. IEEE, vol. 64, no. 8, pp.
1151–1162, Aug. 1976.

[57] L. Horowitz and K. Senne, “Performance advantage of complex LMS for controlling narrow-
band adaptive arrays,” IEEE Trans. Acoust., Speech, Signal Process., vol. 29, no. 3, pp. 722–
736, Jun. 1981.

[58] S. Jones, R. C. III, and W. Reed, “Analysis of error-gradient adaptive linear estimators for a
class of stationary dependent processes,” IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 318–329,
Mar. 1982.

[59] W. A. Gardner, “Learning characterisitcs of stochastic-gradient-descent algorithms: A general
study, analysis, and critique,” Signal Process., vol. 6, no. 2, pp. 113–133, Apr. 1984.

[60] A. Feuer and E. Weinstein, “Convergence analysis of LMS filters with uncorrelated Gaussian
data,” IEEE Trans. Acoust., Speech, Signal Process., vol. 33, no. 1, pp. 222–230, Feb. 1985.

[61] J. B. Foley and F. M. Boland, “A note on the convergence analysis of LMS adaptive filters with
Gaussian data,” IEEE Trans. Acoust., Speech, Signal Process., vol. 36, no. 7, pp. 1087–1089,
Jul. 1988.

[62] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, NY, 2000.
[63] Z. Towfic, J. Chen, and A. H. Sayed, “On the generalization ability of distributed online learn-

ers,” Proc. IEEE Workshop on Machine Learning for Signal Processing (MLSP), Santander,
Spain, pp. 1–6, Sep. 2012.

[64] X. Zhao and A. H. Sayed, “Performance limits for distributed estimation over LMS adaptive
networks,” IEEE Trans. Signal Processing, vol. 60, no. 10, pp. 5107–5124, Oct. 2012.

[65] J. Chen and A. H. Sayed, “Distributed Pareto optimization via diffusion strategies,” IEEE J.
Selected Topics in Signal Processing, vol. 7, no. 2, pp. 205–220, April 2013.

[66] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Syst. Control Lett., vol.
53, no. 1, pp. 65–78, Sep. 2004.

[67] J. Tsitsiklis and M. Athans, “Convergence and asymptotic agreement in distributed decision
problems,” IEEE Trans. Autom. Control, vol. 29, no. 1, pp. 42–50, Jan. 1984.

[68] A. Nedic and A. Ozdaglar, “Cooperative distributed multi-agent optimization,” in Convex Op-
timization in Signal Processing and Communications, Y. Eldar and D. Palomar (Eds.), Cam-
bridge University Press, pp. 340-386, 2010.

[69] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,”
IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–61, Jan. 2009.

[70] B. Johansson, T. Keviczky, M. Johansson, and K. Johansson, “Subgradient methods and con-
sensus algorithms for solving convex optimization problems,” Proc. IEEE CDC, pp. 4185–
4190, Cancun, Mexico, December 2008.

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 68 — #68 i
i

i
i

i
i

68 CHAPTER 1 Asynchronous Adaptive Networks

[71] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione, “Gossip algorithms
for distributed signal processing,” Proc. IEEE, vol. 98, no. 11, pp. 1847–1864, Nov. 2010.

[72] L. Xiao, S. Boyd and S. Lall, “A space-time diffusion scheme peer-to-peer least-squares-
estimation,” Proc. Information Processing in Sensor Networks (IPSN), pp. 168–176, Nashville,
TN, April 2006.

[73] W. Ren and R. W. Beard, “Consensus seeking in multi-agent systems under dynamically chang-
ing interaction topologies,” IEEE Trans. on Automatic Control, vol. 50, pp. 655–661, May
2005.

[74] R. Olfati-Saber and J. Shamma, “Consensus filters for sensor networks and distributed sensor
fusion,” Proc. 44th IEEE Conference on Decision and Control (CDC), pp. 6698–6703, Seville,
Spain, Dec. 2005.

[75] S. Barbarossa, and G. Scutari, “Bio-inspired sensor network design,” IEEE Signal Processing
Magazine, vol. 24, no. 3, pp. 26–35, May 2007.

[76] S. Sardellitti, M. Giona, and S. Barbarossa, “Fast distributed average consensus algorithms
based on advection-diffusion processes,” IEEE Trans. Signal Processing, vol. 58, no. 2, pp.
826–842, Feb. 2010.

[77] P. Braca, S. Marano, and V. Matta, “Running consensus in wireless sensor networks,” Proc.
11th International Conference on Information Fusion, pp. 1–6, Cologne, Germany, June 2008.

[78] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive networks: Formu-
lation and performance analysis,” IEEE Trans. Signal Process., vol. 56, no. 7, pp. 3122–3136,
July 2008.

[79] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for distributed estimation,” IEEE
Trans. Signal Process., vol. 58, no. 3, pp. 1035–1048, Mar. 2010.

[80] S-Y. Tu and A. H. Sayed, “Diffusion strategies outperform consensus strategies for distributed
estimation over adaptive networks,” IEEE Trans. on Signal Processing, vol. 60, no. 12, pp.
6217–6234, Dec. 2012.

[81] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 2003.
[82] S.-Y. Tu and A. H. Sayed, “Mobile adaptive networks,” IEEE J. Sel. Topics. Signal Process.,

vol. 5, no. 4, pp. 649–664, Aug. 2011.
[83] F. Cattivelli and A. H. Sayed, “Modeling bird flight formations using diffusion adaptation,”

IEEE Transactions on Signal Processing, vol. 59, no. 5, pp. 2038–2051, May 2011.
[84] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal distributed online prediction,”

Proc. International Conference on Machine Learning (ICML), Bellevue, WA, pp. 713–720,
Jun. 2011.

[85] A. Agarwal and J. Duchi, “Distributed delayed stochastic optimization,” Proc. Neural Infor-
mation Processing Systems (NIPS), Granada, Spain, pp. 873–881, Dec. 2011.

[86] J. B. Predd, S. B. Kulkarni, and H. V. Poor, “Distributed learning in wireless sensor networks,”
IEEE Signal Processing Magazine, vol. 23, no. 4, pp. 56–69, Jul. 2006.

[87] Z. J. Towfic, J. Chen, and A. H. Sayed, “Collaborative learning of mixture models using diffu-
sion adaptation,” Proc. IEEE Workshop Mach. Learn. Signal Process. (MLSP), Beijing, China,
pp. 1–6, Sep. 2011.

[88] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd edition, The John Hopkins Uni-
versity Press, Baltimore, 1996.

[89] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM,
PA, 1994.

[90] S. U. Pillai, T. Suel, and S. Cha, “The Perron–Frobenius theorem: Some of its applications,”
IEEE Signal Process. Mag., vol. 22, no. 2, pp. 62–75, Mar. 2005.

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 69 — #69 i
i

i
i

i
i

1.8 Concluding Remarks 69

[91] C. G. Lopes and A. H. Sayed, “Distributed processing over adaptive networks,” in Proc. Adap-
tive Sensor Array Processing Workshop, MIT Lincoln Laboratory, MA, pp.1–5, June 2006.

[92] A. H. Sayed and C. G. Lopes, “Adaptive processing over distributed networks,” IEICE Trans.
Fund. of Electron., Commun. and Comput. Sci., vol. E90-A, no. 8, pp. 1504–1510, 2007.

[93] C. G. Lopes and A. H. Sayed, “Diffusion least-mean-squares over adaptive networks,” Proc.
IEEE ICASSP, Honolulu, Hawaii, vol. 3, pp. 917-920, April 2007.

[94] C. G. Lopes and A. H. Sayed, “Steady-state performance of adaptive diffusion least-mean
squares,” Proc. IEEE Workshop on Statistical Signal Processing (SSP), pp. 136-140, Madison,
WI, Aug. 2007.

[95] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS algorithms with information exchange,” Proc.
Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, pp. 251–255, Nov. 2008.

[96] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “A diffusion RLS scheme for distributed esti-
mation over adaptive networks,” Proc. IEEE Workshop on Signal Process. Advances Wireless
Comm. (SPAWC), Helsinki, Finland, pp. 1–5, June 2007.

[97] F. S. Cattivelli and A. H. Sayed, “Diffusion mechanisms for fixed-point distributed Kalman
smoothing,” Proc. EUSIPCO, Lausanne, Switzerland, pp. 1–4, Aug. 2008.

[98] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion recursive least-squares for distributed
estimation over adaptive networks,” IEEE Trans. Signal Process., vol. 56, no. 5, pp. 1865–
1877, May 2008.

[99] S. S. Ram, A. Nedic, and V. V. Veeravalli, “Distributed stochastic subgradient projection algo-
rithms for convex optimization,” J. Optim. Theory Appl., vol. 147, no. 3, pp. 516–545, 2010.

[100] S. Lee and A. Nedic, “Distributed random projection algorithm for convex optimization,”
IEEE J. Selected Topics in Signal Processing, vol. 7, no. 2, pp. 221–229, Apr. 2013.

[101] P. Bianchi, G. Fort, and W. Hachem, “Performance of a distributed stochastic approximation
algorithm,” IEEE Trans. Information Theory, vol. 59, no. 11, pp. 7405–7418, Nov. 2013.

[102] S. S. Stankovic, M. S. Stankovic, and D. S. Stipanovic, “Decentralized parameter estimation
by consensus based stochastic approximation,” IEEE Trans. on Autom. Control, vol. 56, no. 3,
pp. 531–543, Mar. 2011.

[103] J. Chen and A. H. Sayed, “On the limiting behavior of distributed optimization strate-
gies,” Proc. 50th Annual Allerton Conference on Communication, Control, and Computing,
pp. 1535–1542, Monticello, IL, Oct. 2012.

[104] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, 2008.
[105] X. Zhao, S-Y. Tu, and A. H. Sayed, “Diffusion adaptation over networks under imperfect

information exchange and non-stationary data,” IEEE Trans. Signal Processing, vol. 60, no. 7,
pp. 3460–3475, July 2012.

[106] N. Takahashi, I. Yamada, and A. H. Sayed, “Diffusion least-mean-squares with adaptive com-
biners: Formulation and performance analysis,” IEEE Trans. Signal Process., vol. 58, no. 9,
pp. 4795–4810, Sep. 2010.

[107] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, “Kronecker
graphs: An approach to modeling networks,” vol. 11, pp. 985–1042, Sept. 2010.

[108] S-Y. Tu and A. H. Sayed, “Adaptive networks with noisy links,” Proc. IEEE Globecom, pp. 1–
5, Houston, TX, December 2011.

[109] R. Abdolee and B. Champagne, “Diffusion LMS algorithms for sensor networks over non-
ideal inter-sensor wireless channels,” Proc. IEEE Int. Conf. Dist. Comput. Sensor Systems
(DCOSS), pp. 1–6, Barcelona, Spain, June 2011.

[110] A. Khalili, M. A. Tinati, A. Rastegarnia, and J. A. Chambers, “Steady state analysis of diffu-
sion LMS adaptive networks with noisy links,” IEEE Trans. Signal Processing, vol. 60, no. 2,

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 70 — #70 i
i

i
i

i
i

70 CHAPTER 1 Asynchronous Adaptive Networks

pp. 974–979, Feb. 2012.
[111] X. Zhao and A. H. Sayed, “Combination weights for diffusion strategies with imperfect in-

formation exchange,” Proc. IEEE ICC, pp. 648–652, Ottawa, Canada, June 2012.
[112] G. Mateos, I. D. Schizas, and G. B. Giannakis, “Performance analysis of the consensus-

based distributed LMS algorithm,” EURASIP J. Adv. Signal Process., pp. 1–19, 2009,
10.1155/2009/981030, Article ID 981030.

[113] D. Shah, “Gossip algorithms,” Found. Trends Netw., vol. 3, pp. 1–125, 2009.
[114] O. L. Rortveit, J. H. Husoy, and A. H. Sayed, “Diffusion LMS with communications con-

straints,” Proc. 44th Asilomar Conference on Signals, Systems and Computers, Pacific Grove,
CA, pp. 1645–1649, Nov. 2010.

[115] P. Di Lorenzo and A. H. Sayed, “Sparse distributed learning based on diffusion adaptation,”
IEEE Trans. Signal Processing, vol. 61, no. 6, pp. 1419–1433, March 2013.

[116] S. Chouvardas, K. Slavakis, Y. Kopsinis, S. Theodoridis, “A sparsity-promoting adaptive al-
gorithm for distributed learning,” IEEE Transactions on Signal Processing, vol. 60, no. 10, pp.
5412–5425, Oct. 2012.

[117] S. Chouvardas, G. Mileounis, N. Kalouptsidis, and S. Theodoridis, “A greedy sparsity-
promoting LMS for distributed adaptive learning in diffusion networks,” Proc. ICASSP, pp.
5415–5419, Vancouver, BC, Canada, 2013.

[118] Y. Liu, C. Li and Z. Zhang, “Diffusion sparse least-mean squares over networks,” IEEE Trans-
actions on Signal Processing, vol. 60, no. 8, pp. 4480–4485, Aug. 2012.

[119] F. Yan, S. Sundaram, S. V. N. Vishwanathan, and Y. Qi, “Distributed autonomous online
learning: Regrets and intrinsic privacy-preserving properties,” IEEE Trans. Knowledge and
Data Engineering, vol. 25, no. 11, pp. 2483–2493, Nov. 2013.

[120] S. Theodoridis, K. Slavakis, and I. Yamada, “Adaptive learning in a world of projections: A
unifying framework for linear and nonlinear classification and regression tasks,” IEEE Signal
Processing Magazine, vol. 28, no. 1, pp. 97–123, Jan. 2011.

[121] Z. Towfic and A. H. Sayed, “Adaptive penalty-based distributed stochastic convex optimiza-
tion,” IEEE Trans. Signal Process., vol. 62, no. 15, pp. 3924–3938, August 2014.

[122] R. Olfati-Saber, “Kalman-consensus filter: Optimality, stability, and performance,” Proc.
IEEE CDC, pp. 7036–7042, Shangai, China, 2009.

[123] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” Proc. 46th IEEE Conf.
Decision Control, pp. 5492–5498, New Orleans, LA, Dec. 2007.

[124] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion strategies for distributed Kalman
filtering: Formulation and performance analysis,” Proc. IAPR Workshop on Cognitive Inf. Pro-
cess.(CIP), Santorini, Greece, pp. 36–41, June 2008.

[125] F. Cattivelli and A. H. Sayed, “Diffusion strategies for distributed Kalman filtering and
smoothing,” IEEE Trans. Automatic Control, vol. 55, no. 9, pp. 2069–2084, Sep. 2010.

[126] F. Cattivelli and A. H. Sayed, “Diffusion distributed Kalman filtering with adaptive weights,”
Proc. Asilomar Conference on Signals, Systems and Computers, pp. 908–912, Pacific Grove,
CA, Nov. 2009.

[127] U. A. Khan and J. M. F. Moura, “Distributing the Kalman filter for large-scale systems,” IEEE
Trans. Signal Processing, vol. 56, no. 10, pp. 4919–4935, Oct. 2008.

[128] P. Alriksson and A. Rantzer, “Distributed Kalman filtering using weighted averaging,” Proc.
17th Int. Symp. Math. Thy Net. Sys (MTNS), pp. 1–6, Kyoto, Japan, 2006.

[129] D. P. Bertsekas, “A new class of incremental gradient methods for least squares problems,”
SIAM J. Optim., vol. 7, no. 4, pp. 913–926, 1997.

[130] D. P. Bertsekas, Nonlinear Programming, 2nd edition, Athena Scientific, Belmont, MA, 1999.

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 71 — #71 i
i

i
i

i
i

1.8 Concluding Remarks 71

[131] A. Nedic and D. P. Bertsekas, “Incremental subgradient methods for nondifferentiable opti-
mization,” SIAM J. Optim., vol. 12, no. 1, pp. 109–138, 2001.

[132] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for distributed optimiza-
tion,” IEEE J. Sel. Areas Commun., vol. 23, no. 4, pp. 798–808, 2005.

[133] E. S. Helou and A. R. De Pierro, “Incremental subgradients for constrained convex optimiza-
tion: A unified framework and new methods,” SIAM J. on Optimization, vol. 20, pp. 1547–
1572, 2009.

[134] B. Johansson, M. Rabi, and M. Johansson, “A randomized incremental subgradient method
for distributed optimization in networked systems,” SIAM J. on Optimization, vol. 20,
pp. 1157–1170, 2009.

[135] D. Blatt, A. O. Hero, and H. Gauchman, “A convergent incremental gradient method with a
constant step size,” SIAM J. Optimization, vol. 18, pp. 29–51, 2008.

[136] A. H. Sayed and C. Lopes, “Distributed recursive least-squares strategies over adaptive net-
works,” Proc. 40th Asilomar Conference on Signals, Systems and Computers, Pacific Grove,
CA, pp. 233–237, Oct.-Nov., 2006.

[137] C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies over distributed networks,”
IEEE Trans. Signal Process., vol. 55, no. 8, pp. 4064–4077, Aug. 2007.

[138] A. H. Sayed and F. Cattivelli, “Distributed adaptive learning mechanisms,” Handbook on
Array Processing and Sensor Networks, S. Haykin and K. J. Ray Liu, Eds., pp. 695–722,
Wiley, NJ, 2009.

[139] L. Li, J. Chambers, C. G. Lopes, and A. H. Sayed, “Distributed estimation over an adaptive
incremental network based on the affine projection algorithm,” IEEE Trans. Signal Processing,
vol. 58, no. 1, pp. 151–164, Jan. 2010.

[140] F. Cattivelli and A. H. Sayed, “Analysis of spatial and incremental LMS processing for dis-
tributed estimation,” IEEE Trans. Signal Processing, vol. 59, no. 4, pp. 1465-1480, April 2011.

[141] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “A collaborative training algorithm for distributed
learning,” IEEE Trans. Information Theory, vol. 55, no. 4, pp. 1856–1871, April 2009.

[142] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Multitask diffusion adaptation over
asynchronous networks,” IEEE Trans. Signal Processing, vol. 64, no. 11, pp. 2835-2850, June
2016.

[143] A. Bertrand and M. Moonen, “Distributed adaptive node-specific signal estimation in fully
connected sensor networks – Part I: Sequential node updating,” IEEE Trans. Signal Process.,
vol. 58, no. 10, pp. 5277–5291, Oct. 2010.

[144] N. Bogdanovic, J. Plata-Chaves, and K. Berberidis, “Distributed diffusion-based LMS for
node-specific parameter estimation over adaptive networks,” Proc. IEEE ICASSP, pp. 7223–
7227, Florence, Italy, May 2014.

[145] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation over networks,” IEEE
Trans. Signal Processing, vol. 62, no. 16, pp. 4129–4144, August 2014.

[146] J. Chen, C. Richard, and A. H. Sayed, “Diffusion LMS over multitask networks,” IEEE Trans.
Signal Process., vol. 63, no. 11, pp. 2733–2748, June 2015.

[147] A. I. Chen and A. Ozdaglar, “A fast distributed proximal gradient method,” Proc. Annual
Allerton Conference on Communication, Control, and Computing, pp. 601–608, Allerton,
USA, Oct. 2012.

[148] W. Wee and I. Yamada, “A proximal splitting approach to regularized distributed adaptive
estimation in diffusion network,” in Proc. IEEE ICASSP, pp. 5420–5424, Vancouver, Canada,
May 2013,

[149] S. Vlaski, L. Vandenberghe, and A. H. Sayed, ”Diffusion stochastic optimization with non-

i
i

“Coop˙Graph˙Book” — 2017/10/16 — 15:44 — page 72 — #72 i
i

i
i

i
i

72 CHAPTER 1 Asynchronous Adaptive Networks

smooth regularizers,” Proc. IEEE ICASSP, pp. 4149–4153, Shanghai, China, March 2016.
[150] S. Vlaski and A. H. Sayed, “Proximal diffusion for stochastic costs with non-differentiable

regularizers,” Proc. IEEE ICASSP, pp. 3352–3356, Brisbane, Australia, April 2015.
[151] R. Nassif, A. Ferrari, C. Richard, and A. H. Sayed, “Proximal multitask learning over net-

works with sparsity-inducing coregularization,” IEEE Trans. Signal Processing, vol. 64, no.
23, pp. 6329–6344, Dec. 2016.

[152] D. S. Tracy and R. P. Singh, “A new matrix product and its applications in partitioned matrix
differentiation,” Statistica Neerlandica, vol. 26, no. 4, pp. 143–157, 1972.

[153] R. H. Koning and H. Neudecker and T. Wansbeek, “Block Kronecker products and the vecb
operator, Linear Algebra Appl., vol. 149, pp. 165–184, Apr. 1991.

