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Abstract—Graph signal processing allows the generalization
of DSP concepts to the graph domain. However, most works
assume graph signals that are static with respect to time, which
is a limitation even in comparison to classical DSP formulations
where signals are generally sequences that evolve over time.
Several earlier works on adaptive networks have addressed
problems involving streaming data over graphs by developing
effective learning strategies that are well-suited to dynamic data
scenarios, in a manner that generalizes adaptive signal processing
concepts to the graph domain. The objective of this paper is
to blend concepts from adaptive networks and graph signal
processing to propose new useful tools for adaptive graph signal
processing.

I. INTRODUCTION

Signals collected in biology, physics, geology, engineer-
ing, and other domains are often characterized by complex
structures that can sometimes be captured by graphs or net-
works. These graphical representations require appropriate
signal processing and analysis techniques. Some of these
techniques are being developed within the framework of graph
signal processing [1], [2]. This formalism extends conventional
DSP concepts from structured domains (such as time) to
unstructured domains (such as graphs). The extensions create
opportunities for applying signal processing techniques to
signals represented over graphs. Possible applications include
sampling [3]–[5], spectral analysis [6]–[9], and filtering [1],
[2], [10]. Unfortunately, most works on graph signal process-
ing deal with static signals, i.e., signals that need not evolve
with time, despite the dynamic nature of various applications
used to motivate this formalism. Only a few recent studies have
started to deal with dynamic graph signals [11]–[14]. Several
earlier works on adaptive networks have developed learning
strategies that deal precisely with problems involving data
streaming into graphs over time. These works have extended
several concepts from single-agent adaptive signal processing
to graphs and have developed effective strategies for filtering,
estimation, and detection from dynamic graph signals – see,
e.g., the overviews in [15]–[18] and the references therein.
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The aim of this paper is to blend concepts from adaptive
networks [16]–[18] and graph signal processing [1], [2] to
propose new tools for adaptive graph signal processing. In
the first part of the work, we propose a centralized adaptive
method for streaming graph signals based on the LMS strategy.
In the second part, we show how to distribute it across the
graph nodes using the concept of diffusion adaptation over
networks [19]. In the third part of the work, we present the
performance of the resulting algorithm in the mean and mean-
square error sense, as well as its stability. Finally, we illustrate
the effectiveness of the method and the accuracy of the models
on synthetic data.
Notation. Normal font letters denote scalars. Boldface low-
ercase letters denote vectors. Boldface uppercase letters de-
note matrices. The symbol ⊗ denotes the Kronecker product
operator. The symbol Tr(·) denotes the trace operator. The
symbol λmax(·) denotes the maximum eigenvalue of its matrix
argument. The M×M identity matrix is denoted by IM . The
m-th entry of a vector x is denoted by [x]m, the (m,n)-th
entry of a matrix X is denoted by [X]mn, and the k-th row
of a matrix X is denoted by [X]k,•.

II. ADAPTIVE GRAPH FILTERING

We consider a graph G consisting of a set of nodes N of
cardinality N , and a set of edges E such that if nodes k and
` are connected, then (k, `) ∈ E . We are interested in the
analysis of signals distributed on the graph G, defined by x =
[x1, . . . , xN ]> ∈ RN . Each element in x corresponds to a
signal at a node of G. We denote the graph signal that is
available at time i by x(i). We associate with G a translation
(or shift) operator denoted by a matrix S of size N×N whose
component sk` can be non-zero only if k = ` or (k, `) ∈ E .
Let Nk denote the set of neighboring nodes of k, i.e., all
nodes connected to k by an edge. The operation Sx is called
graph shift and is performed locally at each node by linearly
combining the samples x` from neighboring nodes, namely,
[Sx]k =

∑
`∈Nk

sk`x`. In this paper, we are interested in
the estimation problem where, given a desired graph signal
y(i) observed at the output of an unknown system at time
i, in response to a graph signal denoted by x(i), we would



like to estimate the parameters of a filter that minimize a cost
measure. We focus on linear shift-invariant graph filters:

H ,
M−1∑
m=0

hmS
m (1)

where {hm}M−1m=0 are the filter coefficients and M is its
order [2]. A graph filter H ∈ RN×N applied to a graph signal
x(i) ∈ RN produces an output z(i) ∈ RN which is again a
graph signal given by z(i) =Hx(i). We assume that, at each
time instant i, the desired graph signal y(i) is related to the
input graph signal x(i) via the linear model:

y(i) =

M−1∑
m=0

homS
mx(i) + v(i), i ≥ 0, (2)

where v(i) , [v1(i), . . . , vN (i)]> denotes an N×1 i.i.d. zero-
mean measurement noise independent of any other signal and
with covariance matrix Rv = diag{σ2

v,k}Nk=1, while ho ,
col{ho1, . . . , hoM−1} is the vector of graph filter coefficients
to be estimated. The graph signal x(i) is assumed zero-mean
with covariance matrix Rx , E{x(i)x>(i)} > 0. Let Z(i)
denote the N ×M matrix defined as:

Z(i) ,
[
x(i),Sx(i),S2x(i), . . . ,SM−1x(i)

]
(3)

The optimal filter coefficients ho can be found by solving the
following minimization problem:

ho = argmin
h

{
J(h) , E‖y(i)−Z(i)h‖2

}
. (4)

By setting the gradient vector of J(h) to zero, the optimal
parameter vector ho can be found by solving:

RZh
o = rZy, (5)

where RZ is the M ×M matrix RZ , E{Z>(i)Z(i)} and
rZy is the M × 1 vector rZy , E{Z>(i)y(i)}. It can be
verified that the (m,n)-th entry of RZ is given by:

[RZ ]mn = E{x>(i)(Sm−1)>Sn−1x(i)}
= Tr((Sm−1)>Sn−1Rx),

(6)

and that the m-th entry of rZy is given by:

[rZy]m = E{x>(i)(Sm−1)>y(i)} = Tr((Sm−1)>Rxy),
(7)

where Rxy , E{y(i)x>(i)}. It is clear from (5) that when
RZ is positive definite, ho can be determined uniquely. If, on
the other hand, RZ is singular, then we can use its pseudo-
inverse to recover the minimum-norm solution of (4). It is
sufficient for the exposition of this work to assume that RZ

is positive definite.
Alternatively, ho can be estimated iteratively using gradient

descent:

hcent(i+ 1) = hcent(i) + µ(rXy −RZh
cent(i)) (8)

where µ > 0 is a small step-size. This solution requires the
centralized processor to have knowledge of the moments RZ

and rZy , which are rarely available beforehand. To address this

lack of information, we approximate the unavailable moments
based on the realizations {y(i),x(i)} as follows:

RZ ≈ Z>(i)Z(i), rZy ≈ Z>(i)y(i). (9)

Algorithm (8) leads to the following graph-LMS algorithm:

hcent(i+1) = hcent(i)+µZ>(i)
(
y(i)−Z(i)hcent(i)

)
. (10)

In this centralized solution, at each time instant i, each node
in the network sends its data {yk(i), xk(i)} to the central
processor, which in turn updates hcent(i) according to (10).

III. GRAPH DIFFUSION LMS

From (2), the signal yk(i) at vertex k is related to the graph
signal x(i) according to:

yk(i) =

M−1∑
m=0

hom[Smx(i)]k + vk(i), i ≥ 0. (11)

Let z(m)(i) , Smx(i), and let zk(i) be the M × 1 vector
given by:

zk(i) , col
{[
z(0)(i)

]
k
, . . . ,

[
z(M−1)(i)

]
k

}
. (12)

This vector aggregates the k-th entries of all the {z(m)(i)}. It
can be computed locally at node k in M − 1 hops since the
non-zero entries of Sm correspond to pairs of nodes that can
communicate in m hops [20]. Let Rz,k denote the M ×M
covariance matrix of zk(i), namely, Rz,k , E{zk(i)z>k (i)}.
The (m,n)-th element of Rz,k is given by:

[Rz,k]mn = E{[z(m−1)(i)
]
k
[z(n−1)(i)

]
k
}

= Tr([Sm−1]>k,•[S
n−1]k,•Rx).

(13)

Relation (11) can be written alternatively as:

yk(i) = z
>
k (i)h

o + vk(i), i ≥ 0. (14)

The global cost function J(h) in (4) becomes:

J(h) =

N∑
k=1

Jk(h), (15)

where Jk(h) is the local cost at agent k given by:

Jk(h) , E|yk(i)− z>k (i)h|2. (16)

We are therefore able to rewrite in (15) the cost function
J(h) as the aggregate sum of local costs Jk(h). This form
is amenable to distributed optimization. We now explain
how the parameter vector h can be estimated from the data
{yk(i), zk(i)} using distributed adaptive optimization. There
are several distributed techniques that can be employed for
minimizing (15). We shall use the ATC form of the diffusion
LMS algorithm [19] due to its established enhanced perfor-
mance in adaptive scenarios. We denote by hk(i) the estimate
of ho at agent k and iteration i. Starting from an initial



condition hk(0), at every time instant i, the ATC diffusion
LMS strategy takes the following form at each agent k:{

ψk(i+ 1) = hk(i) + µ zk(i)
[
yk(i)− z>k (i)hk(i)

]
,

hk(i+ 1) =
∑

`∈Nk

a`kψ`(i+ 1).

(17)
where µk > 0 is a local step-size parameter and {a`k} are the
non-negative entries of a left-stochastic matrix A satisfying:

a`k ≥ 0,
∑
`∈Nk

a`k = 1, and a`k = 0 if ` /∈ Nk. (18)

The ATC diffusion (17) consists of two steps. The first step
is an adaptation step where agent k uses the data yk(i), zk(i)
to update its parameter vector hk(i) to an intermediate value
ψk(i+1) where zk(i) is computed by node k in M −1 hops.
The second step is a combination step where the intermediate
estimate {ψ`(i + 1)} from the neighborhood of agent k are
combined through the combination coefficients {a`k} to obtain
the updated weight estimate hk(i+ 1).

IV. STOCHASTIC BEHAVIOR

In this section, we briefly present the performance in the
mean and mean-square-error sense of algorithm (17). Let h̃(i)
denote the network error vector defined as:

h̃(i) , col {ho − hk(i)}Nk=1 . (19)

Using the data model (14) and following the same line of
reasoning as in [19, Sec. 6], we find that the network error
vector evolves according to:

h̃(i+ 1) = B(i)h̃(i)−A>Mg(i), (20)

where A , A⊗ IM , M , diag{µ1IM , . . . , µNIM}

B(i) , A>(IMN −MRz(i)), (21)

g(i) , col{z1(i)v1(i), . . . ,zN (i)vN (i)}, (22)

Rz(i) , diag{z1(i)z>1 (i), . . . ,zN (i)z>N (i)}. (23)

To perform the analysis, we introduce the following assump-
tion on the vectors {zk(i)}.

Assumption 1: The regressors zk(i) arise from a zero-
mean random process that is temporally white with positive
covariance Rz,k > 0.
This assumption means that zk(i) is independent of h̃`(j) for
all ` and j ≤ i. This assumption is commonly used when
analyzing adaptive constructions since it allows to simplify
the derivations without constraining the conclusions [21]. It
is worth noting that several works studying the performance
of diffusion strategies under partial observation scenario and
singular covariance matrices exist in the literature [17], [18].
In this work, it is sufficient to focus on the case of non-singular
covariance matrices.

Taking expectation of both sides of (20), and using Assump-
tion 1 and the fact that Eg(i) = 0, we obtain:

E h̃(i+ 1) = BE h̃(i), (24)

where

B , A>(IMN −MRz), (25)

Rz , diag{Rz,1, . . . ,Rz,N}. (26)

Thus, the estimates {hk(i)} generated by algorithm (17)
converge in the mean to the optimal solution ho if B is stable,
namely, ρ(B) < 1. The stability of B is ensured if the step-
sizes are chosen to satisfy [19]:

0 < µk <
2

λmax (Rz,k)
, k = 1, . . . , N. (27)

The mean-square-error behavior of algorithm (17) can be
characterized by studying the evolution of E‖h̃(i)‖2Σ for any
positive semi-definite matrix Σ that we are free to choose.
From recursion (20) and using the independence Assump-
tion 1, the weighted variance evolves according to:

E ‖h̃(i+ 1)‖2Σ = E‖h̃(i)‖2Σ′ + Tr(ΣA>MGMA) (28)

where

Σ′ , E{B>(i)ΣB(i)}, (29)

G , E{g(i)g>(i)} = diag{σ2
v,kRz,k}Nk=1, (30)

where we used the spatially independence assumption of the
zero-mean noise vk(i). Let σ , vec(Σ) denote the vector
representation of Σ obtained by stacking the columns entries
of Σ on top of each other. Let σ , vec(Σ′). The vector
σ′ can be related to σ according to σ′ = Fσ where
F = E{B>(i) ⊗ B>(i)} [19]. The evaluation of F requires
knowledge of the fourth-order moments of the graph signals,
which are not available under the current assumptions. A
common alternative is to use the approximation F ≈ B>⊗B>
for sufficiently small step-sizes where terms involving higher-
order powers of the step-sizes are ignored [19]. Under this
approximation, the stability of F is ensured if ρ(B) < 1, i.e.,
if the step-sizes are chosen according to (27). The variance
relation (28) can be written alternatively as:

E ‖h̃(i+1)‖2σ = E‖h̃(i)‖2Fσ+[vec(A>MGMA)]>σ (31)

where the notation ‖x‖2σ is used to denote the same quantity
‖x‖2Σ = x>ΣX . If F is stable, the variance recursion
converges [19]:

lim
i→∞

E ‖h̃(i)‖2σ = [vec(A>MGMA)]>(I −F)−1σ. (32)

The learning curve ζ(i) , E‖h̃(i)‖2σ is obtained from (31) as
follows. Iterating (31) starting from i = 0 leads to:

ζ(i+1) = E‖h̃(0)‖2Fi+1σ+[vec(A>MGMA)]>
i∑

j=0

F jσ.

(33)
Comparing (33) at time instant i and i+ 1, we obtain:

ζ(i+ 1) = ζ(i)+E‖h̃(0)‖2(F−I)Fiσ+

[vec(A>MGMA)]>F iσ.
(34)
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Fig. 1. Simulation results

V. SIMULATION RESULTS

We tested the ATC graph diffusion LMS algorithm (17) on
a random connected graph of N = 20 nodes generated with
an Erdös-Renyi topology shown in Fig. 1(a). Using a similar
construction as in [11], this graph was obtained by generating
an N × N symmetric matrix S whose entries are governed
by the Gaussian distribution N (0, 1), and then thresholding
edges to be between 1.2 and 1.8 in absolute value. Then, the
edges were soft thresholded by 1.1 to be between 0.1 and 0.7
in magnitude. The shift matrix S was normalized by its largest
eigenvalue. The graph signal x(i) = [x1(i), . . . , xN (i)]> was
generated according to a Gaussian distribution with zero-mean
and diagonal covariance matrix Rx = diag{σ2

x,k}Nk=1. The
noise v(i) = [v1(i), . . . , vN (i)] was zero-mean Gaussian with
covariance Rv = diag{σ2

v,k}Nk=1. The variances σ2
x,k and σ2

v,k

are shown in Fig. 1(b). The filter order M was set to 3 and
the filter coefficients hom were randomly generated from the
uniform distribution U(0, 1). We ran algorithm (17) by setting
a`k = 1

|Nk| for ` ∈ Nk, where | · | denotes the cardinality of
its entry. We used a constant step-size µ for all agents. The
results were averaged over 200 Monte-Carlo runs. Figure 1(c)
shows the network mean-square-deviation (MSD) performance
of algorithm (17), given by 1

N

∑N
k=1 E‖h

o − hk(i)‖2, for
three different values of µ. For each case, we report the
theoretical transient MSD, the theoretical steady-state MSD,
and the simulated MSD. We observe that the theoretical curves
match well the actual performance.

VI. CONCLUSION

This work deals with adaptive graph signal processing.
Based on the diffusion formalism, we presented a distributed
adaptive algorithm for the estimation of the coefficients of
linear shift-invariant graph filters from streaming signals. We
analyzed the performance of the algorithm and validated the
theoretical models by experiments.
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